Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Prediction of Noise Generated by Rod-Airfoil Configuration: an Investigation Based on Experiments and Machine Learning

dc.contributor.author Kocak, Eyup
dc.contributor.author Ayli, Ece
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-11T17:03:18Z
dc.date.available 2025-05-11T17:03:18Z
dc.date.issued 2024
dc.description.abstract This study investigated the effects of various parameters on the SPL (Sound Pressure Level) levels of rod-airfoil configurations. An experimental study was performed to investigate the effects of the rod parameters, such as the configuration of the rod, the distance between the rod and the airfoil, the diameter effect of the rod, and the geometry of the rod, on the performance of the rod-airfoil configuration. An Artificial Neural Network (ANN) model was then developed and applied to accurately predict the SPL of rod-airfoil configurations. The results of the study revealed that the Levenberg-Marquardt (LM) algorithm with 2 hidden neurons produced the best performance in predicting the SPL level, with a training R-squared value of 0.9998 and a testing R-squared value of 0.998715. The findings also indicated that increasing rod diameter increases sound pressure level while reducing gap width increases SPL levels and decreases frequency values. This method offers a more precise and effective technique to forecast the SPL levels of rod-airfoil designs, allowing designers to enhance their creations and lower noise levels. The findings of this study can also be utilized to direct future research in this area and offer important information for a better understanding of the mechanism of rod-airfoil noise creation. To the best of the authors' knowledge, this is the first study to look into rod-airfoil design predictions made using machine learning approaches. en_US
dc.identifier.doi 10.1177/09544100241274508
dc.identifier.issn 0954-4100
dc.identifier.issn 2041-3025
dc.identifier.scopus 2-s2.0-85201566646
dc.identifier.uri https://doi.org/10.1177/09544100241274508
dc.identifier.uri https://hdl.handle.net/20.500.12416/9591
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Experiment en_US
dc.subject Rod-Airfoil en_US
dc.subject Machine Learning en_US
dc.subject Ann en_US
dc.title Prediction of Noise Generated by Rod-Airfoil Configuration: an Investigation Based on Experiments and Machine Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Koçak, Eyup
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 57193872973
gdc.author.scopusid 55371892800
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.author.wosid Kocak, Eyup/Hik-2192-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kocak, Eyup; Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.endpage 1453 en_US
gdc.description.issue 14 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1440 en_US
gdc.description.volume 238 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4401647347
gdc.identifier.wos WOS:001293176800001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.08
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files