Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A high-order unconditionally stable numerical method for a class of multi-term time-fractional diffusion equation arising in the solute transport models

dc.authorscopusid 57217575323
dc.authorscopusid 7404909594
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Alam, Mohammad Prawesh
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Khan, Arshad
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-11-22T11:54:55Z
dc.date.available 2023-11-22T11:54:55Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Alam, Mohammad Prawesh; Khan, Arshad] Jamia Millia Islamia, Dept Math, New Delhi 110025, India; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey en_US
dc.description.abstract In this paper, we study a high-order unconditionally stable numerical method to approximate the class of multi-term time-fractional diffusion equations. This type of problem appears in the modelling of transport of certain quantities such as heat, mass, energy, solutes in ground water and soils. The multi-term time-fractional derivative is approximated by using the Crank-Nicolson method for the Caputo's time derivative. The space derivative is approximated by using the collocation method based on quintic B-spline basis functions. We have established the stability and convergence analysis of the proposed numerical scheme thoroughly, and it is shown that the order of convergence in space variable is almost four and in the time variable is O (Delta t(2-max{gamma,gamma i})). To prove the accuracy and efficiency of the developed method, we consider four numerical examples and perform the numerical simulation. The developed algorithm works well andvalidate the theoretical results. The developed method is fourth-order convergent in the space variable, which is almost two orders of magnitude higher than the other spline collocation methods. en_US
dc.description.publishedMonth 1
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Alam, Mohammad Prawesh; Khan, Arshad; Baleanu, Dumitru. (2023). "A high-order unconditionally stable numerical method for a class of multi-term time-fractional diffusion equation arising in the solute transport models", International Journal Of Computer Mathematics, Vol. 100, No.1, pp. 105-132. en_US
dc.identifier.doi 10.1080/00207160.2022.2082248
dc.identifier.endpage 132 en_US
dc.identifier.issn 0020-7160
dc.identifier.issn 1029-0265
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85131683934
dc.identifier.scopusquality Q3
dc.identifier.startpage 105 en_US
dc.identifier.uri https://doi.org/10.1080/00207160.2022.2082248
dc.identifier.volume 100 en_US
dc.identifier.wos WOS:000809541900001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 20
dc.subject Multi-Term Time Fractional Diffusion Equations en_US
dc.subject Crank-Nicolson Method For The Caputo Derivative en_US
dc.subject Quintic B-Spline Basis Functions en_US
dc.subject Stability And Convergence Analysis en_US
dc.title A high-order unconditionally stable numerical method for a class of multi-term time-fractional diffusion equation arising in the solute transport models tr_TR
dc.title A High-Order Unconditionally Stable Numerical Method for a Class of Multi-Term Time-Fractional Diffusion Equation Arising in the Solute Transport Models en_US
dc.type Article en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: