Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Machine Learning Based Developing Flow Control Technique Over Circular Cylinders

dc.contributor.author Turkoglu, Hasmet
dc.contributor.author Ayli, Ece
dc.contributor.author Kocak, Eyup
dc.contributor.authorID 265836 tr_TR
dc.contributor.authorID 283455 tr_TR
dc.contributor.authorID 12941 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-03T13:27:32Z
dc.date.accessioned 2025-09-18T13:26:44Z
dc.date.available 2024-01-03T13:27:32Z
dc.date.available 2025-09-18T13:26:44Z
dc.date.issued 2023
dc.description.abstract This paper demonstrates the feasibility of blowing and suction for flow control based on the computational fluid dynamics (CFD) simulations at a low Reynolds number flows. The effects of blowing and suction position, and the blowing and suction mass flowrate, and on the flow control are presented in this paper. The optimal conditions for suppressing the wake of the cylinder are investigated by examining the flow separation and the near wake region; analyzing the aerodynamic force (lift and drag) fluctuations using the fast Fourier transform (FFT) to separate the effects of small-scale turbulent structures in the wake region. A method for stochastic analysis using machine learning techniques is proposed. Three different novel machine learning methods were applied to CFD results to predict the variation in drag coefficient due to the vortex shedding. Although, the prediction power of all the methods utilized is in the acceptable accuracy range, the Gaussian process regression (GPR) method is more accurate with an R-2(coefficient of determination) > 0.95. The results indicate that by optimizing the blowing and suction parameters like mass flowrate, slot location, and the slot configuration, up to 20% reduction can be achieved in the drag coefficient. en_US
dc.description.publishedMonth 4
dc.identifier.citation Aylı, E.; Koçak, E.; Türkoğlu, H. (2023). "Machine Learning Based Developing Flow Control Technique Over Circular Cylinders", Journal of Computing and Information Science in Engineering, Vol.23, No.2. en_US
dc.identifier.doi 10.1115/1.4054689
dc.identifier.issn 1530-9827
dc.identifier.issn 1944-7078
dc.identifier.scopus 2-s2.0-85143979640
dc.identifier.uri https://doi.org/10.1115/1.4054689
dc.identifier.uri https://hdl.handle.net/123456789/12713
dc.language.iso en en_US
dc.publisher Asme en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Gpr en_US
dc.subject Ann en_US
dc.subject Wake en_US
dc.subject Active Control en_US
dc.subject Cylinder en_US
dc.subject Svm en_US
dc.subject Computational Foundations For Engineering Optimization en_US
dc.subject Machine Learning For Engineering Applications en_US
dc.title Machine Learning Based Developing Flow Control Technique Over Circular Cylinders en_US
dc.title Machine Learning Based Developing Flow Control Technique Over Circular Cylinders tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Türkoğlu, Haşmet
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.institutional Koçak, Eyup
gdc.author.scopusid 55371892800
gdc.author.scopusid 57193872973
gdc.author.scopusid 6701516974
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.author.wosid Turkoglu, Hasmet/Jjd-2788-2023
gdc.author.wosid Kocak, Eyup/Hik-2192-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ayli, Ece; Kocak, Eyup; Turkoglu, Hasmet] Cankaya Univ, Dept Mech Engn, TR-06790 Ankara, Turkiye en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 23 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4281727527
gdc.identifier.wos WOS:000971745900007
gdc.openalex.fwci 1.52163536
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 4
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 6
relation.isAuthorOfPublication 05bb7e0d-de81-461a-81fe-d9edc5169945
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication.latestForDiscovery 05bb7e0d-de81-461a-81fe-d9edc5169945
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files