Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Nonstandard finite difference method for solving complex-order fractional Burgers’ equations

dc.authorid Al-Mekhlafi, Seham/0000-0003-0351-9679
dc.authorscopusid 6507922829
dc.authorscopusid 56716517100
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Al-Mekhlafi, Seham/Abe-2359-2020
dc.authorwosid Sweilam, Nasser/Q-2175-2019
dc.contributor.author Sweilam, N. H.
dc.contributor.author AL-Mekhlafi, S. M.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-08-24T08:35:23Z
dc.date.available 2022-08-24T08:35:23Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Sweilam, N. H.] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt; [AL-Mekhlafi, S. M.] Sanaa Univ, Fac Educ, Dept Math, Sanaa, Yemen; [Baleanu, D.] Cankaya Univ, Dept Math, Etimesgut, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania en_US
dc.description Al-Mekhlafi, Seham/0000-0003-0351-9679 en_US
dc.description.abstract The aim of this work is to present numerical treatments to a complex order fractional nonlinear one-dimensional problem of Burgers' equations. A new parameter sigma(t) is presented in order to be consistent with the physical model problem. This parameter characterizes the existence of fractional structures in the equations. A relation between the parameter sigma(t) and the time derivative complex order is derived. An unconditionally stable numerical scheme using a kind of weighted average nonstandard finite-difference discretization is presented. Stability analysis of this method is studied. Numerical simulations are given to confirm the reliability of the proposed method. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Sweilam, N.H.; AL-Mekhlafi, S.M.; Baleanu, Dumitru (2022). "Nonstandard finite difference method for solving complex-order fractional Burgers’ equations", Journal of Advanced Research, Vol. 25, pp. 19-29. en_US
dc.identifier.doi 10.1016/j.jare.2020.04.007
dc.identifier.endpage 29 en_US
dc.identifier.issn 2090-1232
dc.identifier.issn 2090-1224
dc.identifier.pmid 32922970
dc.identifier.scopus 2-s2.0-85085173483
dc.identifier.scopusquality Q1
dc.identifier.startpage 19 en_US
dc.identifier.uri https://doi.org/10.1016/j.jare.2020.04.007
dc.identifier.volume 25 en_US
dc.identifier.wos WOS:000568361200003
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 19
dc.subject Burgers' Equations en_US
dc.subject Complex Order Fractional Derivative en_US
dc.subject Nonstandard Weighted Average Finite Difference Method en_US
dc.subject Stability Analysis en_US
dc.title Nonstandard finite difference method for solving complex-order fractional Burgers’ equations tr_TR
dc.title Nonstandard Finite Difference Method for Solving Complex-Order Fractional Burgers' Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 15
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: