Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

New approach on controllability of Hilfer fractional derivatives with nondense domain

dc.authorid K, Jothimani/0000-0002-5822-0386
dc.authorscopusid 56715663200
dc.authorscopusid 57201216999
dc.authorscopusid 55857082700
dc.authorscopusid 7005872966
dc.authorscopusid 57192576535
dc.authorwosid Chokkalingam, Ravichandran/Aae-1077-2022
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Nisar, Kottakkaran/F-7559-2015
dc.authorwosid K, Jothimani/Aae-7716-2022
dc.contributor.author Nisar, Kottakkaran Sooppy
dc.contributor.author Jothimani, Kasthurisamy
dc.contributor.author Ravichandran, Chokkalingam
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Kumar, Devendra
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-04-25T07:39:31Z
dc.date.available 2024-04-25T07:39:31Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Nisar, Kottakkaran Sooppy] Prince Sattam Bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawasir 11991, Saudi Arabia; [Jothimani, Kasthurisamy] Sri Eshwar Coll Engn, Dept Math, Coimbatore 641202, Tamil Nadu, India; [Ravichandran, Chokkalingam] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore 641029, Tamil Nadu, India; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan; [Kumar, Devendra] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India en_US
dc.description K, Jothimani/0000-0002-5822-0386 en_US
dc.description.abstract This work picturizes the results on the controllability of the nondense Hilfer neutral fractional derivative (HNFD). The uniqueness and controllability of HNFD are discussed with Winch theorem and Banach contraction technique. In addition, a numerical approximation is given to deal with different criteria of our results. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Nisar, Kottakkaran Sooppy;...et.al. (2022). "New approach on controllability of Hilfer fractional derivatives with nondense domain", AIMS Mathematics, Vol.7, No.6, pp.10079-10095. en_US
dc.identifier.doi 10.3934/math.2022561
dc.identifier.endpage 10095 en_US
dc.identifier.issn 2473-6988
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85126930228
dc.identifier.scopusquality Q1
dc.identifier.startpage 10079 en_US
dc.identifier.uri https://doi.org/10.3934/math.2022561
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000811583600005
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 21
dc.subject Controllability en_US
dc.subject Hilfer Derivative en_US
dc.subject Nondense Domain en_US
dc.subject Fixed Point en_US
dc.subject Banach Space en_US
dc.subject Fractional Calculus en_US
dc.title New approach on controllability of Hilfer fractional derivatives with nondense domain tr_TR
dc.title New Approach on Controllability of Hilfer Fractional Derivatives With Nondense Domain en_US
dc.type Article en_US
dc.wos.citedbyCount 18
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
370.78 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: