Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-á-vis the differential prognosis and differentiation of Multiple Sclerosis’ subgroups
dc.authorid | Karaca, Yeliz/0000-0001-8725-6719 | |
dc.authorscopusid | 56585856100 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 6602766721 | |
dc.authorwosid | Karabudak, Rana/Hjh-2490-2023 | |
dc.authorwosid | Karaca, Yeliz/W-1525-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Karaca, Yeliz | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Karabudak, Rana | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-03-12T13:27:00Z | |
dc.date.available | 2024-03-12T13:27:00Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Karaca, Yeliz] Univ Massachusetts Med Sch UMASS, Worcester, MA 01655 USA; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-1406530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Karabudak, Rana] Hacettepe Univ, Dept Neurol, Ankara, Turkey | en_US |
dc.description | Karaca, Yeliz/0000-0001-8725-6719 | en_US |
dc.description.abstract | Hidden Markov Model (HMM) is a stochastic process where implicit or latent stochastic processes can be inferred indirectly through a sequence of observed states. HMM as a mathematical model for uncertain phenomena is applicable for the description and computation of complex dynamical behaviours enabling the mathematical formulation of neural dynamics across spatial and temporal scales. The human brain with its fractal structure demonstrates complex dynamics and fractals in the brain are characterized by irregularity, singularity and self-similarity in terms of form at different observation levels, making detection difficult as observations in real-time occurrences can be time variant, discrete, continuous or noisy. Multiple Sclerosis (MS) is an autoimmune degenerative disease with time and space related dissemination, leading to neuronal apoptosis, coupled with some subtle features that could be overlooked by physicians. This study, through the proposed integrated approach with multi-source complex spatial data, aims to attain accurate prediction, diagnosis and prognosis of MS subgroups by HMM with Viterbi algorithm and Forward-Backward algorithm as the dynamic and efficient products of knowledge-based and Artificial Intelligence (AI)-based systems within the framework of precision medicine. Multifractal Bayesian method (MFM) accordingly applied to identify and eliminate "insignificant "irregularities while maintaining "significant "singularities. An efficient modelling of HMM is proposed to diagnose and predict the course of MS while using MFM method. Unlike the methods employed in previous studies, our proposed integrated novel method encompasses the subsequent approaches based on reliable MS dataset ((X) over cap) collected: (i) MFM method was applied ((X) over cap) to MS dataset to characterize the irregular, self-similar and significant attributes, thus, attributes with "insignificant " irregularities were eliminated and "significant " singularities were maintained. MFM-MS dataset ((X) over cap) was generated. (ii) The continuous values in the MS dataset ((X) over cap) and MFM-MS dataset ((X) over cap) were converted into discrete values through vector quantization method of the HMM (iii) Through transitional matrices, different observation matrices were computed from the both datasets. (v) Computational complexity has been computed for both datasets. (vi) The results of the HMM models based on observation matrices obtained from both datasets were compared. In terms of the integrated HMM model proposed and the MS dataset handled, no earlier work exists in the literature. The experimental results demonstrate the applicability and accuracy of our novel proposed integrated method, HMM and Multifractal (HMM-MFM) method, for the application to the MS dataset (X). Compared with conventional methods, our novel method has achieved more superiority regarding extracting subtle and hidden details, which are significant for distinguishing different dynamic and complex systems including engineering and other related applied sciences. Thus, we have aimed at pointing a new frontier by providing a novel alternative mathematical model to facilitate the critical decision-making, management and prediction processes among the related areas in chaotic, dynamic complex systems with intricate and transient states. (C)2022 Elsevier B.V. All rights reserved. | en_US |
dc.description.publishedMonth | 6 | |
dc.description.sponsorship | Turkish Neurological Association | en_US |
dc.description.sponsorship | The authors are sincerely grateful to Hacettepe University Medical Faculty, Neurology and Radiology Department as well as Primer Magnetic Resonance Imaging Center, and to radiologists Eray Atli (MD) , Mehmet Yoeruebulut (MD) and Aysenur Cila (MD) for their cooperation through their domain knowledge, MRI read-ing processes related to the MS dataset and manual segmentation of the dataset input. Yeliz Karaca would also like to extend her gratitude to the Turkish Neurological Association for all their support, including the radiology training she had received. All the authors have read and agreed to the published version of the manuscript. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded - Social Science Citation Index | |
dc.identifier.citation | Karaca, Yeliz; Baleanu, Dumitru; Karabudak, Rana. (2021). "Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-á-vis the differential prognosis and differentiation of Multiple Sclerosis’ subgroups", Knowledge-Based Systems, Vol.246. | en_US |
dc.identifier.doi | 10.1016/j.knosys.2022.108694 | |
dc.identifier.issn | 0950-7051 | |
dc.identifier.issn | 1872-7409 | |
dc.identifier.scopus | 2-s2.0-85128457589 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.knosys.2022.108694 | |
dc.identifier.volume | 246 | en_US |
dc.identifier.wos | WOS:000795156400005 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 8 | |
dc.subject | Hidden Markov Model | en_US |
dc.subject | Viterbi Algorithm | en_US |
dc.subject | Forward-Backward Algorithm | en_US |
dc.subject | Multifractal Analysis | en_US |
dc.subject | Nonlinear Stochastic Processes | en_US |
dc.subject | Computational Dynamic Complexityanalyses | en_US |
dc.subject | Multiple Sclerosis' Subgroups | en_US |
dc.title | Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-á-vis the differential prognosis and differentiation of Multiple Sclerosis’ subgroups | tr_TR |
dc.title | Hidden Markov Model and Multifractal Method-Based Predictive Quantization Complexity Models Vis-A the Differential Prognosis and Differentiation of Multiple Sclerosis' Subgroups | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: