Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The New Robust Conic Gplm Method With an Application To Finance: Prediction of Credit Default

dc.contributor.author Weber, Gerhard-Wilhelm
dc.contributor.author Cavusoglu, Zehra
dc.contributor.author Defterli, Ozlem
dc.contributor.author Ozmen, Ayse
dc.contributor.authorID 31401 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2017-03-14T10:59:55Z
dc.date.accessioned 2025-09-18T13:27:43Z
dc.date.available 2017-03-14T10:59:55Z
dc.date.available 2025-09-18T13:27:43Z
dc.date.issued 2013
dc.description Weber, Gerhard-Wilhelm/0000-0003-0849-7771 en_US
dc.description.abstract This paper contributes to classification and identification in modern finance through advanced optimization. In the last few decades, financial misalignments and, thereby, financial crises have been increasing in numbers due to the rearrangement of the financial world. In this study, as one of the most remarkable of these, countries' debt crises, which result from illiquidity, are tried to predict with some macroeconomic variables. The methodology consists of a combination of two predictive regression models, logistic regression and robust conic multivariate adaptive regression splines (RCMARS), as linear and nonlinear parts of a generalized partial linear model. RCMARS has an advantage of coping with the noise in both input and output data and of obtaining more consistent optimization results than CMARS. An advanced version of conic generalized partial linear model which includes robustification of the data set is introduced: robust conic generalized partial linear model (RCGPLM). This new model is applied on a data set that belongs to 45 emerging markets with 1,019 observations between the years 1980 and 2005. en_US
dc.description.publishedMonth 6
dc.identifier.citation Özmen, A...et al. (2013). The new robust conic GPLM method with an application to finance: prediction of credit default. Journal Of Global Optimization, 56(2), 233-249. http://dx.doi.org/10.1007/s10898-012-9902-7 en_US
dc.identifier.doi 10.1007/s10898-012-9902-7
dc.identifier.issn 0925-5001
dc.identifier.issn 1573-2916
dc.identifier.scopus 2-s2.0-84879025908
dc.identifier.uri https://doi.org/10.1007/s10898-012-9902-7
dc.identifier.uri https://hdl.handle.net/123456789/13032
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Predicting Default Probabilities en_US
dc.subject Uncertainty en_US
dc.subject Robust Optimization en_US
dc.subject Rcmars en_US
dc.subject Robust Conic Generalized Partial Linear Model en_US
dc.title The New Robust Conic Gplm Method With an Application To Finance: Prediction of Credit Default en_US
dc.title The new robust conic GPLM method with an application to finance: prediction of credit default tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Weber, Gerhard-Wilhelm/0000-0003-0849-7771
gdc.author.institutional Defterli, Özlem
gdc.author.scopusid 44761403200
gdc.author.scopusid 55634220900
gdc.author.scopusid 55177970600
gdc.author.scopusid 8546136600
gdc.author.wosid Weber, Gabrielle/N-8214-2017
gdc.author.wosid Defterli, Ozlem/Aah-2521-2020
gdc.author.wosid Ozmen, Ayse/F-7308-2013
gdc.author.wosid Weber, Gerhard-Wilhelm/V-2046-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ozmen, Ayse; Weber, Gerhard-Wilhelm] Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey; [Cavusoglu, Zehra] Cent Bank Republ Turkey, Ankara, Turkey; [Defterli, Ozlem] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, Ankara, Turkey; [Weber, Gerhard-Wilhelm] Univ Siegen, Fac Econ Business & Law, D-57068 Siegen, Germany; [Weber, Gerhard-Wilhelm] Univ Ballarat, Sch Sci Informat Technol & Engn, Ballarat, Vic 3353, Australia en_US
gdc.description.endpage 249 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 233 en_US
gdc.description.volume 56 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2034774757
gdc.identifier.wos WOS:000320117100003
gdc.openalex.fwci 2.76403631
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 36
gdc.plumx.crossrefcites 16
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 35
gdc.scopus.citedcount 35
gdc.wos.citedcount 30
relation.isAuthorOfPublication 9f00fb1b-e8e0-4303-9d32-1ac0230e2616
relation.isAuthorOfPublication.latestForDiscovery 9f00fb1b-e8e0-4303-9d32-1ac0230e2616
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files