Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Customer order scheduling problem: a comparative metaheuristics study

dc.authorid Gunalay, Yavuz/0000-0003-1541-9755
dc.authorid Hazir, Oncu/0000-0003-0183-8772
dc.authorscopusid 23034277700
dc.authorscopusid 6508129771
dc.authorscopusid 7003748258
dc.authorwosid Gunalay, Yavuz/Aae-8228-2019
dc.authorwosid Hazir, Oncu/C-8920-2013
dc.contributor.author Hazir, Oncue
dc.contributor.author Gunalay, Yavuz
dc.contributor.author Erel, Erdal
dc.contributor.authorID 56488 tr_TR
dc.contributor.authorID 3019 tr_TR
dc.contributor.authorID 1986 tr_TR
dc.date.accessioned 2016-04-08T11:05:45Z
dc.date.available 2016-04-08T11:05:45Z
dc.date.issued 2008
dc.department Çankaya University en_US
dc.department-temp [Hazir, Oncue; Gunalay, Yavuz; Erel, Erdal] Bilkent Univ, Fac Business Adm, TR-06800 Ankara, Turkey; [Hazir, Oncue] Cankaya Univ, Dept Ind Engn, TR-06530 Ankara, Turkey en_US
dc.description Gunalay, Yavuz/0000-0003-1541-9755; Hazir, Oncu/0000-0003-0183-8772 en_US
dc.description.abstract The customer order scheduling problem (COSP) is defined as to determine the sequence of tasks to satisfy the demand of customers who order several types of products produced on a single machine. A setup is required whenever a product type is launched. The objective of the scheduling problem is to minimize the average customer order flow time. Since the customer order scheduling problem is known to be strongly NP-hard, we solve it using four major metaheuristics and compare the performance of these heuristics, namely, simulated annealing, genetic algorithms, tabu search, and ant colony optimization. These are selected to represent various characteristics of metaheuristics: nature-inspired vs. artificially created, population-based vs. local search, etc. A set of problems is generated to compare the solution quality and computational efforts of these heuristics. Results of the experimentation show that tabu search and ant colony perform better for large problems whereas simulated annealing performs best in small-size problems. Some conclusions are also drawn on the interactions between various problem parameters and the performance of the heuristics. en_US
dc.description.publishedMonth 5
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Hazır, Ö., Günalay, Y., Erel, E. (2008). Customer order scheduling problem: a comparative metaheuristics study. International Journal of Advanced Manufacturing Technology, 37(5-6), 589-598. http://dx.doi.org/10.1007/s00170-007-0998-8 en_US
dc.identifier.doi 10.1007/s00170-007-0998-8
dc.identifier.endpage 598 en_US
dc.identifier.issn 0268-3768
dc.identifier.issn 1433-3015
dc.identifier.issue 5-6 en_US
dc.identifier.scopus 2-s2.0-42449111726
dc.identifier.scopusquality Q2
dc.identifier.startpage 589 en_US
dc.identifier.uri https://doi.org/10.1007/s00170-007-0998-8
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000255198400017
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 30
dc.subject Metaheuristics en_US
dc.subject Customer Order Scheduling en_US
dc.subject Simulated Annealing en_US
dc.subject Genetic Algorithms en_US
dc.subject Tabu Search en_US
dc.subject Ant Colony Optimization en_US
dc.title Customer order scheduling problem: a comparative metaheuristics study tr_TR
dc.title Customer Order Scheduling Problem: a Comparative Metaheuristics Study en_US
dc.type Article en_US
dc.wos.citedbyCount 27
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: