Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Solving of the fractional non-linear and linear schrodinger equations by homotopy perturbation method

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorGolmankhaneh, Ali K.
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-04-03T12:39:41Z
dc.date.available2020-04-03T12:39:41Z
dc.date.issued2009
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, the homotopy perturbation method is applied to obtain approximate analytical solutions of the fractional non-linear Schrodinger equations. The solutions are obtained in the form of rapidly convergent infinite series with easily computable terms. We illustrated the ability of the method for solving fractional non linear equation by some examples.en_US
dc.identifier.citationBaleanu, Dumitru; Golmankhaneh, Alireza K.; Golmankhaneh, Ali K., "Solving of the fractional non-linear and linear schrodinger equations by homotopy perturbation method", Romanian Journal Of Physics, Vol.54, No.9-10, pp.823-832, (2009).en_US
dc.identifier.endpage832en_US
dc.identifier.issn1221-146X
dc.identifier.issue9-10en_US
dc.identifier.startpage823en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/2898
dc.identifier.volume54en_US
dc.language.isoenen_US
dc.publisherEditura Academiei Romaneen_US
dc.relation.ispartofRomanian Journal Of Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDecompositionen_US
dc.titleSolving of the fractional non-linear and linear schrodinger equations by homotopy perturbation methodtr_TR
dc.titleSolving of the Fractional Non-Linear and Linear Schrodinger Equations by Homotopy Perturbation Methoden_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: