Solving of the fractional non-linear and linear schrodinger equations by homotopy perturbation method
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Golmankhaneh, Ali K. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2020-04-03T12:39:41Z | |
dc.date.available | 2020-04-03T12:39:41Z | |
dc.date.issued | 2009 | |
dc.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In this paper, the homotopy perturbation method is applied to obtain approximate analytical solutions of the fractional non-linear Schrodinger equations. The solutions are obtained in the form of rapidly convergent infinite series with easily computable terms. We illustrated the ability of the method for solving fractional non linear equation by some examples. | en_US |
dc.identifier.citation | Baleanu, Dumitru; Golmankhaneh, Alireza K.; Golmankhaneh, Ali K., "Solving of the fractional non-linear and linear schrodinger equations by homotopy perturbation method", Romanian Journal Of Physics, Vol.54, No.9-10, pp.823-832, (2009). | en_US |
dc.identifier.endpage | 832 | en_US |
dc.identifier.issn | 1221-146X | |
dc.identifier.issue | 9-10 | en_US |
dc.identifier.startpage | 823 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/2898 | |
dc.identifier.volume | 54 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Editura Academiei Romane | en_US |
dc.relation.ispartof | Romanian Journal Of Physics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Decomposition | en_US |
dc.title | Solving of the fractional non-linear and linear schrodinger equations by homotopy perturbation method | tr_TR |
dc.title | Solving of the Fractional Non-Linear and Linear Schrodinger Equations by Homotopy Perturbation Method | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: