Planar System-Masses in an Equilateral Triangle: Numerical Study within Fractional Calculus
dc.authorid | Asad, Jihad/0000-0002-6862-1634 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 35174751300 | |
dc.authorscopusid | 8898843900 | |
dc.authorscopusid | 34880044900 | |
dc.authorscopusid | 16022677900 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Asad, Jihad/F-5680-2011 | |
dc.authorwosid | Ghanbari, Behzad/Aad-1848-2019 | |
dc.authorwosid | Jajarmi, Amin/O-7701-2019 | |
dc.authorwosid | Pirouz, Hassan/Aah-8840-2020 | |
dc.authorwosid | Asad, Jihad/P-2975-2016 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Ghanbari, Behzad | |
dc.contributor.author | Asad, Jihad H. | |
dc.contributor.author | Jajarmi, Amin | |
dc.contributor.author | Pirouz, Hassan Mohammadi | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2021-02-08T12:48:39Z | |
dc.date.available | 2021-02-08T12:48:39Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 76900, Romania; [Ghanbari, Behzad] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran; [Asad, Jihad H.] Palestine Tech Univ, Coll Arts & Sci, Dept Phys, Tulkarm, Palestine; [Jajarmi, Amin; Pirouz, Hassan Mohammadi] Univ Bojnord, Dept Elect Engn, Bojnord, Iran | en_US |
dc.description | Asad, Jihad/0000-0002-6862-1634 | en_US |
dc.description.abstract | In this work, a system of three masses on the vertices of equilateral triangle is investigated. This system is known in the literature as a planar system. We first give a description to the system by constructing its classical Lagrangian. Secondly, the classical Euler-Lagrange equations (i.e., the classical equations of motion) are derived. Thirdly, we fractionalize the classical Lagrangian of the system, and as a result, we obtain the fractional Euler-Lagrange equations. As the final step, we give the numerical simulations of the fractional model, a new model which is based on Caputo fractional derivative. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, Dumitru...et al. (2020). "Planar System-Masses in an Equilateral Triangle: Numerical Study within Fractional Calculus", CMES-Computer Modeling in Engineering & Sciences, Vol. 124, No. 3, pp. 953-968. | en_US |
dc.identifier.doi | 10.32604/cmes.2020.010236 | |
dc.identifier.endpage | 968 | en_US |
dc.identifier.issn | 1526-1492 | |
dc.identifier.issn | 1526-1506 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85090518715 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 953 | en_US |
dc.identifier.uri | https://doi.org/10.32604/cmes.2020.010236 | |
dc.identifier.volume | 124 | en_US |
dc.identifier.wos | WOS:000565634900010 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Tech Science Press | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 135 | |
dc.subject | Planar System | en_US |
dc.subject | Masses In Equilateral Triangle | en_US |
dc.subject | Springs | en_US |
dc.subject | Euler-Lagrange Equations | en_US |
dc.subject | Fractional Derivative | en_US |
dc.title | Planar System-Masses in an Equilateral Triangle: Numerical Study within Fractional Calculus | tr_TR |
dc.title | Planar System-Masses in an Equilateral Triangle: Numerical Study Within Fractional Calculus | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 122 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |