Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales

dc.authorid Eldeeb, Ahmed/0000-0003-2822-4092
dc.authorscopusid 56511757600
dc.authorscopusid 57201678405
dc.authorscopusid 33367530800
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Askar, Sameh/Aba-6011-2020
dc.authorwosid El-Deeb, Ahmed/Aaq-5910-2020
dc.contributor.author El-Deeb, Ahmed A.
dc.contributor.author Makharesh, Samer D.
dc.contributor.author Askar, Sameh S.
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-02-14T07:48:52Z
dc.date.available 2024-02-14T07:48:52Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [El-Deeb, Ahmed A.; Makharesh, Samer D.] Al Azhar Univ, Fac Sci, Dept Math, Cairo 11884, Egypt; [Askar, Sameh S.] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan en_US
dc.description Eldeeb, Ahmed/0000-0003-2822-4092 en_US
dc.description.abstract In this work, we prove several new (gamma, a)-nabla Bennett and Leindler dynamic inequalities on time scales. The results proved here generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using integration by parts, chain rule and Holder inequality for the (gamma, a)-nabla-fractional derivative on time scales. en_US
dc.description.sponsorship King Saud University, Riyadh, Saudi Arabia [RSP-2022/167] en_US
dc.description.sponsorship The authors extend their appreciation to the Research Supporting Project number (RSP-2022/167) , King Saud University, Riyadh, Saudi Arabia. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation El-Deeb, Ahmed A.;...et.al. (2022). "Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales", AIMS Mathematics, Vol.7, No.8, pp.14099-14116. en_US
dc.identifier.doi 10.3934/math.2022777
dc.identifier.endpage 14116 en_US
dc.identifier.issn 2473-6988
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85131058830
dc.identifier.scopusquality Q1
dc.identifier.startpage 14099 en_US
dc.identifier.uri https://doi.org/10.3934/math.2022777
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000804482300005
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Steffensen'S Inequality en_US
dc.subject Dynamic Inequality en_US
dc.subject Dynamic Integral en_US
dc.subject Time Scales en_US
dc.title Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales tr_TR
dc.title Bennett-Leindler Nabla Type Inequalities Via Conformable Fractional Derivatives on Time Scales en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
277.83 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: