Classification Models Based On Tanaka's Fuzzy Linear Regression Approach: the Case of Customer Satisfaction Modeling
dc.authorid | Koksal, Gulser/0000-0001-7968-8992 | |
dc.authorid | , Ozlem/0000-0003-0821-150X | |
dc.authorscopusid | 36700406100 | |
dc.authorscopusid | 7003488290 | |
dc.authorscopusid | 6506670261 | |
dc.authorscopusid | 34970726800 | |
dc.authorwosid | Turker Bayrak, Ozlem/Abc-1373-2020 | |
dc.authorwosid | Koksal, Gulser/A-8553-2018 | |
dc.contributor.author | Sekkeli, Gizem | |
dc.contributor.author | Koksal, Gulser | |
dc.contributor.author | Batman, Inci | |
dc.contributor.author | Bayrak, Ozlem Turker | |
dc.contributor.authorID | 56416 | tr_TR |
dc.date.accessioned | 2020-04-18T17:15:26Z | |
dc.date.available | 2020-04-18T17:15:26Z | |
dc.date.issued | 2010 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Sekkeli, Gizem; Koksal, Gulser] Middle E Tech Univ, Dept Ind Engn, TR-06531 Ankara, Turkey; [Batman, Inci] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey; [Bayrak, Ozlem Turker] Cankaya Univ, Dept Ind Engn, Ankara, Turkey | en_US |
dc.description | Koksal, Gulser/0000-0001-7968-8992; , Ozlem/0000-0003-0821-150X | en_US |
dc.description.abstract | Fuzzy linear regression (FLR) approaches are widely used for modeling relations between variables that involve human judgments, qualitative and imprecise data. Tanaka's FLR analysis is the first one developed and widely used for this purpose. However, this method is not appropriate for classification problems, because it can only handle continuous type dependent variables rather than categorical. In this study, we propose three alternative approaches for building classification models, for a customer satisfaction survey data, based on Tanaka's FLR approach. In these models, we aim to reflect both random and fuzzy types of uncertainties in the data in different ways, and compare their performances using several classification performance measures. Thus, this study contributes to the field of fuzzy classification by developing Tanaka based classification models. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded - Conference Proceedings Citation Index - Science | |
dc.identifier.citation | Sekkeli, Gizem; Koksal, Gulser; Batman, Inci; et al. "Classification models based on Tanaka's fuzzy linear regression approach: The case of customer satisfaction modeling", Journal of Intelligent & Fuzzy Systems, Vol. 21, No. 5, (2010). | en_US |
dc.identifier.doi | 10.3233/IFS-2010-0466 | |
dc.identifier.endpage | 351 | en_US |
dc.identifier.issn | 1064-1246 | |
dc.identifier.issn | 1875-8967 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-78650568302 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 341 | en_US |
dc.identifier.uri | https://doi.org/10.3233/IFS-2010-0466 | |
dc.identifier.volume | 21 | en_US |
dc.identifier.wos | WOS:000282187700007 | |
dc.identifier.wosquality | Q4 | |
dc.language.iso | en | en_US |
dc.publisher | Ios Press | en_US |
dc.relation.ispartof | 1st International Symposium on Fuzzy Systems -- OCT 01-02, 2009 -- Ankara, TURKEY | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 23 | |
dc.subject | Fuzziness | en_US |
dc.subject | Fuzzy Classification | en_US |
dc.subject | Fuzzy Linear Regression (Flr) | en_US |
dc.subject | Customer Satisfaction | en_US |
dc.title | Classification Models Based On Tanaka's Fuzzy Linear Regression Approach: the Case of Customer Satisfaction Modeling | tr_TR |
dc.title | Classification Models Based on Tanaka's Fuzzy Linear Regression Approach: the Case of Customer Satisfaction Modeling | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 20 | |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: