Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification Models Based On Tanaka's Fuzzy Linear Regression Approach: the Case of Customer Satisfaction Modeling

dc.authorid Koksal, Gulser/0000-0001-7968-8992
dc.authorid , Ozlem/0000-0003-0821-150X
dc.authorscopusid 36700406100
dc.authorscopusid 7003488290
dc.authorscopusid 6506670261
dc.authorscopusid 34970726800
dc.authorwosid Turker Bayrak, Ozlem/Abc-1373-2020
dc.authorwosid Koksal, Gulser/A-8553-2018
dc.contributor.author Sekkeli, Gizem
dc.contributor.author Koksal, Gulser
dc.contributor.author Batman, Inci
dc.contributor.author Bayrak, Ozlem Turker
dc.contributor.authorID 56416 tr_TR
dc.date.accessioned 2020-04-18T17:15:26Z
dc.date.available 2020-04-18T17:15:26Z
dc.date.issued 2010
dc.department Çankaya University en_US
dc.department-temp [Sekkeli, Gizem; Koksal, Gulser] Middle E Tech Univ, Dept Ind Engn, TR-06531 Ankara, Turkey; [Batman, Inci] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey; [Bayrak, Ozlem Turker] Cankaya Univ, Dept Ind Engn, Ankara, Turkey en_US
dc.description Koksal, Gulser/0000-0001-7968-8992; , Ozlem/0000-0003-0821-150X en_US
dc.description.abstract Fuzzy linear regression (FLR) approaches are widely used for modeling relations between variables that involve human judgments, qualitative and imprecise data. Tanaka's FLR analysis is the first one developed and widely used for this purpose. However, this method is not appropriate for classification problems, because it can only handle continuous type dependent variables rather than categorical. In this study, we propose three alternative approaches for building classification models, for a customer satisfaction survey data, based on Tanaka's FLR approach. In these models, we aim to reflect both random and fuzzy types of uncertainties in the data in different ways, and compare their performances using several classification performance measures. Thus, this study contributes to the field of fuzzy classification by developing Tanaka based classification models. en_US
dc.description.woscitationindex Science Citation Index Expanded - Conference Proceedings Citation Index - Science
dc.identifier.citation Sekkeli, Gizem; Koksal, Gulser; Batman, Inci; et al. "Classification models based on Tanaka's fuzzy linear regression approach: The case of customer satisfaction modeling", Journal of Intelligent & Fuzzy Systems, Vol. 21, No. 5, (2010). en_US
dc.identifier.doi 10.3233/IFS-2010-0466
dc.identifier.endpage 351 en_US
dc.identifier.issn 1064-1246
dc.identifier.issn 1875-8967
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-78650568302
dc.identifier.scopusquality Q3
dc.identifier.startpage 341 en_US
dc.identifier.uri https://doi.org/10.3233/IFS-2010-0466
dc.identifier.volume 21 en_US
dc.identifier.wos WOS:000282187700007
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Ios Press en_US
dc.relation.ispartof 1st International Symposium on Fuzzy Systems -- OCT 01-02, 2009 -- Ankara, TURKEY en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 23
dc.subject Fuzziness en_US
dc.subject Fuzzy Classification en_US
dc.subject Fuzzy Linear Regression (Flr) en_US
dc.subject Customer Satisfaction en_US
dc.title Classification Models Based On Tanaka's Fuzzy Linear Regression Approach: the Case of Customer Satisfaction Modeling tr_TR
dc.title Classification Models Based on Tanaka's Fuzzy Linear Regression Approach: the Case of Customer Satisfaction Modeling en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 20
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: