Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Banach contraction principle for cyclical mappings on partial metric spaces

dc.authorid Alzabut, Prof. Dr. Jehad/0000-0002-5262-1138
dc.authorid Mukheimer, Aiman/0000-0001-8798-3297
dc.authorid Abdeljawad, Thabet/0000-0002-8889-3768
dc.authorscopusid 6508051762
dc.authorscopusid 13105947900
dc.authorscopusid 6507307858
dc.authorscopusid 35225400000
dc.authorwosid Mukheimer, Aiman/T-8352-2018
dc.authorwosid Alzabut, Prof. Dr. Jehad/T-8075-2018
dc.authorwosid Abdeljawad, Thabet/T-8298-2018
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Abdeljawad, T.
dc.contributor.author Alzabut, J. O.
dc.contributor.author Alzabut, Jehad
dc.contributor.author Mukheimer, A.
dc.contributor.author Zaidan, Y.
dc.contributor.other Matematik
dc.date.accessioned 2017-03-10T11:40:26Z
dc.date.available 2017-03-10T11:40:26Z
dc.date.issued 2012
dc.department Çankaya University en_US
dc.department-temp [Abdeljawad, T.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Alzabut, J. O.; Mukheimer, A.; Zaidan, Y.] Prince Sultan Univ, Dept Math & Phys Sci, Riyadh 11586, Saudi Arabia; [Zaidan, Y.] Univ Wisconsin Fox Valley, Dept Math, Menasha, WI 54952 USA en_US
dc.description Alzabut, Prof. Dr. Jehad/0000-0002-5262-1138; Mukheimer, Aiman/0000-0001-8798-3297; Abdeljawad, Thabet/0000-0002-8889-3768 en_US
dc.description.abstract We prove that the Banacah contraction principle proved by Matthews in 1994 on 0-complete partial metric spaces can be extended to cyclical mappings. However, the generalized contraction principle proved by (Ilic et al. in Appl. Math. Lett. 24:1326-1330, 2011) on complete partial metric spaces can not be extended for cyclical mappings. Some examples are given to illustrate our results. Moreover, our results generalize some of the results obtained by (Kirk et al. in Fixed Point Theory 4(1):79-89, 2003). An Edelstein type theorem is also extended when one of the sets in the cyclic decomposition is 0-compact. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Abdeljawad, T...et al. (2012). Banach contraction principle for cyclical mappings on partial metric spaces. Fixed Point Theory And Applications, 154, 1-7. http://dx.doi.org/10.1186/1687-1812-2012-154 en_US
dc.identifier.doi 10.1186/1687-1812-2012-154
dc.identifier.issn 1687-1812
dc.identifier.scopus 2-s2.0-84884408826
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1186/1687-1812-2012-154
dc.identifier.wos WOS:000209491200001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 18
dc.subject Partial Metric Space en_US
dc.subject Fixed Point en_US
dc.subject Cyclic Mapping en_US
dc.subject Banach Contraction Principle en_US
dc.subject 0-Compact Set en_US
dc.title Banach contraction principle for cyclical mappings on partial metric spaces tr_TR
dc.title Banach Contraction Principle for Cyclical Mappings on Partial Metric Spaces en_US
dc.type Article en_US
dc.wos.citedbyCount 20
dspace.entity.type Publication
relation.isAuthorOfPublication ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isAuthorOfPublication 4dd7fc50-11d9-47ee-93c1-632016879f5e
relation.isAuthorOfPublication.latestForDiscovery ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abdeljawad, Thabet.pdf
Size:
271.67 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: