Entanglement of Optical and Microcavity Modes by Means of an Optoelectronic System
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Entanglement between optical and microwave cavity modes is a critical issue in illumination systems. Optomechanical systems are utilized to introduce coupling between the optical and microwave cavity modes. However, due to some restrictions of the optomechanical system, especially sensitivity to the thermal photon noise at room temperature, an alternative optoelectronic system is designed to address the problem. We study a method by which it may be possible to remove the mechanical part of the previous systems to minimize the thermally generated photons. Unlike optomechanical systems, in our system, the optical mode is directly coupled to the microwave cavity mode through the optoelectronic elements without employing any mechanical parts. The utilized approach leads to generating the entangled modes at room temperature. For this purpose, the dynamics of the motion of the optoelectronic system is theoretically derived using the Heisenberg-Langevin equations from which one can calculate the coupling between optical and microwave cavity modes. The direct coupling between the optical and microwave cavity modes is the most important feature and is achieved through the combination of the photodetector and a Varactor diode. Hence, by controlling the photodetector current, that is, the photocurrent, depending on the optical cavity incident wave and the Varactor diode-biased voltage, the coupling between the optical and microwave cavity modes is established. The voltage across the Varactor diode also depends on the generated photocurrent. Consequently, our results show that the coupled modes are entangled at room temperature without the requirement for any mechanical parts.
Description
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Salmanogli, Ahmad; Gokcen, Dincer; Gecim, H. Selcuk, "Entanglement of Optical and Microcavity Modes by Means of an Optoelectronic System", Physical Review Applied, Vol. 11, No. 2, (2019).
WoS Q
Scopus Q
Source
Physical Review Applied
Volume
11
Issue
2