Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Maxwell's Equations on Cantor Sets: a Local Fractional Approach

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Maxwell's equations on Cantor sets are derived from the local fractional vector calculus. It is shown that Maxwell's equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Local fractional differential forms of Maxwell's equations on Cantor sets in the Cantorian and Cantor-type cylindrical coordinates are obtained. Maxwell's equations on Cantor set with local fractional operators are the first step towards a unified theory of Maxwell's equations for the dynamics of cold dark matter.

Description

Cattani, Carlo/0000-0002-7504-0424; Yang, Xiao-Jun/0000-0003-0009-4599

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
27

Source

Volume

2013

Issue

Start Page

End Page

PlumX Metrics
Citations

CrossRef : 12

Scopus : 65

Captures

Mendeley Readers : 9

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
8.29880155

Sustainable Development Goals

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo