Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Existence and Uniqueness of Solutions for A Class of Nonlinear Fractional Differential Equations With Infinite Delay

dc.authorid Babakhani, Azizollah/0000-0002-5342-1322
dc.authorid Babakhani, Abolfazl/0000-0002-8780-6968
dc.authorscopusid 7801309777
dc.authorscopusid 7005872966
dc.authorscopusid 36013313700
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Agarwal, Ravi/Aeq-9823-2022
dc.authorwosid Babakhani, Abolfazl/Aad-1088-2020
dc.contributor.author Babakhani, Azizollah
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Agarwal, Ravi P.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-03T11:44:02Z
dc.date.available 2020-04-03T11:44:02Z
dc.date.issued 2013
dc.department Çankaya University en_US
dc.department-temp [Babakhani, Azizollah] Babol Univ Technol, Fac Basic Sci, Dept Math, Babol Sar 4714871167, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Agarwal, Ravi P.] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX USA; [Agarwal, Ravi P.] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia en_US
dc.description Babakhani, Azizollah/0000-0002-5342-1322; Babakhani, Abolfazl/0000-0002-8780-6968 en_US
dc.description.abstract We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem in Omega = {y : (-infinity,b] -> R : y vertical bar(<-infinity, 0]) epsilon B} such that y vertical bar ([0,b]) is continuous and B is a phase space. en_US
dc.description.sponsorship King Abdulaziz University [130-1-1433/HiCi]; KAU en_US
dc.description.sponsorship The authors would like to thank the referee for helpful comments and suggestions. This paper was funded by King Abdulaziz University, under Grant no. (130-1-1433/HiCi). The authors, therefore, acknowledge technical and financial support of KAU. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Babakhani, Azizollah; Baleanu, Dumitru; Agarwal, Ravi P., "The Existence and Uniqueness of Solutions for a Class of Nonlinear Fractional Differential Equations with Infinite Delay", Abstract and Applied Analysis, (2013) en_US
dc.identifier.doi 10.1155/2013/592964
dc.identifier.issn 1085-3375
dc.identifier.issn 1687-0409
dc.identifier.scopus 2-s2.0-84876521126
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1155/2013/592964
dc.identifier.wos WOS:000316878200001
dc.identifier.wosquality N/A
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 9
dc.title The Existence and Uniqueness of Solutions for A Class of Nonlinear Fractional Differential Equations With Infinite Delay tr_TR
dc.title The Existence and Uniqueness of Solutions for a Class of Nonlinear Fractional Differential Equations With Infinite Delay en_US
dc.type Article en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dumitru Baleanu.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: