Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Evaluation of features used in electromyography classification

dc.authorid Alguner, Ayber Eray/0000-0003-0822-3957
dc.authorscopusid 57226400378
dc.authorscopusid 8375807400
dc.authorwosid Alguner, Ayber Eray/Hni-3806-2023
dc.authorwosid Ergezer, Halit/S-6502-2017
dc.contributor.author Alguner, Ayber Eray
dc.contributor.author Ergezer, Halit
dc.contributor.authorID 293396 tr_TR
dc.contributor.other Mekatronik Mühendisliği
dc.date.accessioned 2023-02-16T12:48:53Z
dc.date.available 2023-02-16T12:48:53Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Alguner, Ayber Eray; Ergezer, Halit] Cankaya Univ, Mekatron Muhendisligi Bolumu, Ankara, Turkey en_US
dc.description Alguner, Ayber Eray/0000-0003-0822-3957 en_US
dc.description.abstract Classification of electromyography (EMG) signals using machine learning has been studied for a long time. Today, this classification is tried to be made more accurate, fast and applicable by using the methods developed. However, beside this effort, it is suspected that researchers are using features without taking into account the effects on the classification performance, but often by influence of other researches. From this point of view, the effects of some features used in studies published in recent years on classification performance were tested and the results obtained were shared. In the experiments performed using a common method support vector machine (SVM), it was found that increasing the number of features does not always provide an increase in performance, even in some cases, it causes a decrease in accuracy rates. en_US
dc.description.publishedMonth 6
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citation Alguner, Ayber Eray; Ergezer, Halit (2021). "Evaluation of features used in electromyography classification", SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings. en_US
dc.identifier.doi 10.1109/SIU53274.2021.9477886
dc.identifier.isbn 9781665436496
dc.identifier.scopus 2-s2.0-85111424565
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/SIU53274.2021.9477886
dc.identifier.wos WOS:000808100700128
dc.identifier.wosquality N/A
dc.institutionauthor Ergezer, Halit
dc.language.iso tr en_US
dc.publisher Ieee en_US
dc.relation.ispartof 29th IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUN 09-11, 2021 -- ELECTR NETWORK en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Electromyography en_US
dc.subject Svm en_US
dc.subject Feature Evaluation en_US
dc.title Evaluation of features used in electromyography classification tr_TR
dc.title Evaluation of Features Used in Electromyography Classification en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isAuthorOfPublication.latestForDiscovery e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication.latestForDiscovery 5b0b2c59-0735-4593-b820-ff3847d58827

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: