Approximate Solutions for Solving Nonlinear Variable-Order Fractional Riccati Differential Equations
| dc.contributor.author | Abdelkawy, Mohamed A. | |
| dc.contributor.author | Amin, Ahmed Z. M. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Doha, Eid H. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-01-29T12:07:42Z | |
| dc.date.accessioned | 2025-09-18T15:43:13Z | |
| dc.date.available | 2020-01-29T12:07:42Z | |
| dc.date.available | 2025-09-18T15:43:13Z | |
| dc.date.issued | 2019 | |
| dc.description | Z .Amin, Ahmed/0000-0003-4044-3335; Abdelkawy, Mohamed/0000-0002-9043-9644 | en_US |
| dc.description.abstract | In this manuscript, we introduce a spectral technique for approximating the variable-order fractional Riccati differential equation (VOFRDE). Firstly, the solution and its space fractional derivatives is expanded as shifted Chebyshev polynomials series. Then we determine the expansion coefficients by reducing the VOFRDEs and its conditions to a system of algebraic equations. We show the accuracy and applicability of our numerical approach through four numerical examples. | en_US |
| dc.identifier.citation | Doha, Eid H.; Abdelkawy, Mohamed A.; Amin, Ahmed Z. M.; et al., "Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations", Nonlinear Analysis-Modelling and Control, Vol. 24, No. 2, pp. 176-188, (2019). | en_US |
| dc.identifier.doi | 10.15388/NA.2019.2.2 | |
| dc.identifier.issn | 1392-5113 | |
| dc.identifier.scopus | 2-s2.0-85064762178 | |
| dc.identifier.uri | https://doi.org/10.15388/NA.2019.2.2 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13894 | |
| dc.language.iso | en | en_US |
| dc.publisher | inst Mathematics & informatics | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | Riemann-Liouville Fractional Derivative Of Variable Order | en_US |
| dc.subject | Fractional Riccati Differential Equation | en_US |
| dc.subject | Spectral Collocation Method | en_US |
| dc.subject | Shifted Chebyshev Polynomials | en_US |
| dc.title | Approximate Solutions for Solving Nonlinear Variable-Order Fractional Riccati Differential Equations | en_US |
| dc.title | Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Z .Amin, Ahmed/0000-0003-4044-3335 | |
| gdc.author.id | Abdelkawy, Mohamed/0000-0002-9043-9644 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 6602467804 | |
| gdc.author.scopusid | 56704936300 | |
| gdc.author.scopusid | 57198456441 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Amin, Ahmed/Aak-6677-2020 | |
| gdc.author.wosid | Doha, Eid/L-1723-2019 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Abdelkawy, M/Aeb-7974-2022 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Doha, Eid H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Abdelkawy, Mohamed A.] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia; [Abdelkawy, Mohamed A.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Amin, Ahmed Z. M.] Canadian Int Coll, Inst Engn, Dept Basic Sci, Giza, Egypt; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
| gdc.description.endpage | 188 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 176 | en_US |
| gdc.description.volume | 24 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2916077765 | |
| gdc.identifier.wos | WOS:000457498800002 | |
| gdc.openalex.fwci | 1.8368984 | |
| gdc.openalex.normalizedpercentile | 0.84 | |
| gdc.opencitations.count | 16 | |
| gdc.plumx.crossrefcites | 16 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 19 | |
| gdc.scopus.citedcount | 19 | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |