Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Novel Cfd-Ann Approach for Plunger Valve Optimization: Cost-Effective Performance Enhancement

dc.contributor.author Kaak, Abdul Rahman Sabra
dc.contributor.author Celebiog, Kutay
dc.contributor.author Bozkus, Zafer
dc.contributor.author Ulucak, Oguzhan
dc.contributor.author Ayli, Ece
dc.contributor.authorID 265836 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-05-27T11:54:08Z
dc.date.accessioned 2025-09-18T13:26:06Z
dc.date.available 2024-05-27T11:54:08Z
dc.date.available 2025-09-18T13:26:06Z
dc.date.issued 2024
dc.description Ulucak, Oguzhan/0000-0002-2063-2553; Sabra Kaak, Abdul Rahman/0009-0007-6461-7770; Bozkus, Zafer/0000-0001-6863-3531 en_US
dc.description.abstract This paper introduces a novel computational fluid dynamics-artificial neural network (CFD-ANN) approach that has been devised to enhance the efficiency of plunger valves. The primary emphasis of this research is to achieve an optimal equilibrium between hydraulic flow and geometric configuration. This study is a novel contribution to the field as it explores the flow dynamics of plunger valves using Computational Fluid Dynamics (CFD) and proposes a unique methodology by incorporating Machine Learning (ML) for performance forecasting. An artificial neural network (ANN) architecture was developed using a thorough comprehension of flow physics and the impact of geometric parameters acquired through computational fluid dynamics (CFD). Using optimization, the primary aspects of the Artificial Neural Network (ANN), including the learning algorithm and the number of hidden layers, have been modified. This refinement has resulted in the development of an architecture exhibiting a remarkably high R2 value of 0.987. This architectural design was employed to optimize the plunger valve. By utilizing Artificial Neural Networks (ANN), a comprehensive analysis comprising 1000 distinct configurations was effectively performed, resulting in a significant reduction in time expenditure compared to relying on Computational Fluid Dynamics (CFD). The result was a refined arrangement that achieved maximum head loss, subsequently verified using computational fluid dynamics (CFD) simulations, resulting in a minimal discrepancy of 2.66%. The efficacy of artificial neural networks (ANN) becomes apparent due to their notable cost-efficiency, along with their capacity to produce outcomes that are arduous and expensive to get through conventional optimization research utilizing computational fluid dynamics (CFD). en_US
dc.description.publishedMonth 7
dc.description.sponsorship Turkish Ministry of Development en_US
dc.description.sponsorship The computations and experimental studies were conducted at TOBB ETU Hydro Energy Research Laboratory (ETU Hydro) , with financial support from the Turkish Ministry of Development. en_US
dc.identifier.citation Kaak, Abdul Rahman Sabra...et al. (2024). "A novel CFD-ANN approach for plunger valve optimization: Cost-effective performance enhancement", Flow Measurement and Instrumentation, Vol. 97. en_US
dc.identifier.doi 10.1016/j.flowmeasinst.2024.102589
dc.identifier.issn 0955-5986
dc.identifier.issn 1873-6998
dc.identifier.scopus 2-s2.0-85188536747
dc.identifier.uri https://doi.org/10.1016/j.flowmeasinst.2024.102589
dc.identifier.uri https://hdl.handle.net/123456789/12505
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ann en_US
dc.subject Cfd en_US
dc.subject Plunger Valve en_US
dc.subject Optimization en_US
dc.subject Validation en_US
dc.title A Novel Cfd-Ann Approach for Plunger Valve Optimization: Cost-Effective Performance Enhancement en_US
dc.title A novel CFD-ANN approach for plunger valve optimization: Cost-effective performance enhancement tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ulucak, Oguzhan/0000-0002-2063-2553
gdc.author.id Sabra Kaak, Abdul Rahman/0009-0007-6461-7770
gdc.author.id Bozkus, Zafer/0000-0001-6863-3531
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 58953587000
gdc.author.scopusid 37661052300
gdc.author.scopusid 6601990118
gdc.author.scopusid 57220077206
gdc.author.scopusid 55371892800
gdc.author.wosid Bozkus, Zafer/P-8997-2019
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.author.wosid Sabrakaak, Abdulrahman/Mcy-5874-2025
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kaak, Abdul Rahman Sabra; Bozkus, Zafer] Middle East Tech Univ, Dept Civil Engn, Ankara, Turkiye; [Celebiog, Kutay] TOBB Univ Econ & Technol, Hydro Energy Res Lab, Ankara, Turkiye; [Ulucak, Oguzhan] TED Univ, Dept Mech Engn, Ankara, Turkiye; [Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 97 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4392973604
gdc.identifier.wos WOS:001218075400001
gdc.openalex.fwci 3.26655948
gdc.openalex.normalizedpercentile 0.88
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 23
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 8
gdc.wos.citedcount 9
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files