Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical Computational Heuristic Through Morlet Wavelet Neural Network for Solving the Dynamics of Nonlinear SITR COVID-19

dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorAlnahdi, Abeer S.
dc.contributor.authorJeelani, Mdi Begum
dc.contributor.authorAbdelkawy, Mohamed A.
dc.contributor.authorRaja, Muhammad Asif Zahoor
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorHussain, Muhammad Mubashar
dc.contributor.authorID56389tr_TR
dc.date.accessioned2024-04-29T12:18:33Z
dc.date.available2024-04-29T12:18:33Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe present investigations are associated with designing Morlet wavelet neural network (MWNN) for solving a class of susceptible, infected, treatment and recovered (SITR) fractal systems of COVID-19 propagation and control. The structure of an error function is accessible using the SITR differential form and its initial conditions. The optimization is performed using the MWNN together with the global as well as local search heuristics of genetic algorithm (GA) and active-set algorithm (ASA), i.e., MWNN-GA-ASA. The detail of each class of the SITR nonlinear COVID-19 system is also discussed. The obtained outcomes of the SITR system are compared with the Runge-Kutta results to check the perfection of the designed method. The statistical analysis is performed using different measures for 30 independent runs as well as 15 variables to authenticate the consistency of the proposed method. The plots of the absolute error, convergence analysis, histogram, performance measures, and boxpen_US
dc.identifier.citationSabir, Zulqurnain;...et.al. (2022). "Numerical Computational Heuristic Through Morlet Wavelet Neural Network for Solving the Dynamics of Nonlinear SITR COVID-19", CMES - Computer Modeling in Engineering and Sciences, Vol.131, No.2, pp.763-785.en_US
dc.identifier.doi10.32604/cmes.2022.018496
dc.identifier.endpage785en_US
dc.identifier.issn15261492
dc.identifier.issue2en_US
dc.identifier.startpage763en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/8038
dc.identifier.volume131en_US
dc.language.isoenen_US
dc.relation.ispartofCMES - Computer Modeling in Engineering and Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectActive-Seten_US
dc.subjectArtificial Neural Networksen_US
dc.subjectGenetic Algorithmen_US
dc.subjectMorlet Functionen_US
dc.subjectNonlinear SITR Modelen_US
dc.subjectRunge-Kuttaen_US
dc.subjectTreatmenten_US
dc.subjectTreatmenten_US
dc.titleNumerical Computational Heuristic Through Morlet Wavelet Neural Network for Solving the Dynamics of Nonlinear SITR COVID-19tr_TR
dc.titleNumerical Computational Heuristic Through Morlet Wavelet Neural Network for Solving the Dynamics of Nonlinear Sitr Covid-19en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: