Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Solitons and Jacobi Elliptic Function Solutions to the Complex Ginzburg–Landau Equation

dc.authorid Osman, M. S./0000-0002-5783-0940
dc.authorscopusid 36903183800
dc.authorscopusid 36450796300
dc.authorscopusid 55646409100
dc.authorscopusid 57045880100
dc.authorscopusid 7005872966
dc.authorwosid Mirzazadeh, Mohammad/Y-3202-2019
dc.authorwosid Hosseini, Kamyar/J-7345-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Osman, M. S./E-3084-2013
dc.contributor.author Hosseini, Kamyar
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Mirzazadeh, Mohammad
dc.contributor.author Osman, M. S.
dc.contributor.author Al Qurashi, Maysaa
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-01-04T08:30:09Z
dc.date.available 2023-01-04T08:30:09Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Hosseini, Kamyar] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran; [Mirzazadeh, Mohammad] Univ Guilin, Dept Engn Sci, Fac Technol & Engn, Rudsar Vajargah, Iran; [Osman, M. S.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Osman, M. S.] Umm Aiqura Univ, Dept Math, Fac Appl Sci, Mecca, Saudi Arabia; [Al Qurashi, Maysaa] King Saud Univ, Dept Math, Riyadh, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
dc.description Osman, M. S./0000-0002-5783-0940 en_US
dc.description.abstract The complex Ginzburg-Landau (CGL) equation which describes the soliton propagation in the presence of the detuning factor is firstly considered; then its solitons as well as Jacobi elliptic function solutions are obtained systematically using a modified Jacobi elliptic expansion method. In special cases, several dark and bright soliton solutions to the CGL equation are retrieved when the modulus of ellipticity approaches unity. The results presented in the current work can help to complete previous studies on the complex Ginzburg-Landau equation. en_US
dc.description.publishedMonth 6
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Hosseini, Kamyar...et al. (2020). "Solitons and Jacobi Elliptic Function Solutions to the Complex Ginzburg–Landau Equation", Frontiers in Physics, Vol. 8. en_US
dc.identifier.doi 10.3389/fphy.2020.00225
dc.identifier.issn 2296-424X
dc.identifier.scopus 2-s2.0-85087898015
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3389/fphy.2020.00225
dc.identifier.volume 8 en_US
dc.identifier.wos WOS:000615898900001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Frontiers Media Sa en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 26
dc.subject Complex Ginzburg-Landau Equation en_US
dc.subject Detuning Factor en_US
dc.subject Modified Jacobi Elliptic Expansion Method en_US
dc.subject Solitons en_US
dc.subject Jacobi Elliptic Function Solutions en_US
dc.title Solitons and Jacobi Elliptic Function Solutions to the Complex Ginzburg–Landau Equation tr_TR
dc.title Solitons and Jacobi Elliptic Function Solutions To the Complex Ginzburg-Landau Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 26
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
355.27 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: