Solitons and Jacobi Elliptic Function Solutions to the Complex Ginzburg–Landau Equation
dc.authorid | Osman, M. S./0000-0002-5783-0940 | |
dc.authorscopusid | 36903183800 | |
dc.authorscopusid | 36450796300 | |
dc.authorscopusid | 55646409100 | |
dc.authorscopusid | 57045880100 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Mirzazadeh, Mohammad/Y-3202-2019 | |
dc.authorwosid | Hosseini, Kamyar/J-7345-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Osman, M. S./E-3084-2013 | |
dc.contributor.author | Hosseini, Kamyar | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Mirzazadeh, Mohammad | |
dc.contributor.author | Osman, M. S. | |
dc.contributor.author | Al Qurashi, Maysaa | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2023-01-04T08:30:09Z | |
dc.date.available | 2023-01-04T08:30:09Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Hosseini, Kamyar] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran; [Mirzazadeh, Mohammad] Univ Guilin, Dept Engn Sci, Fac Technol & Engn, Rudsar Vajargah, Iran; [Osman, M. S.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Osman, M. S.] Umm Aiqura Univ, Dept Math, Fac Appl Sci, Mecca, Saudi Arabia; [Al Qurashi, Maysaa] King Saud Univ, Dept Math, Riyadh, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
dc.description | Osman, M. S./0000-0002-5783-0940 | en_US |
dc.description.abstract | The complex Ginzburg-Landau (CGL) equation which describes the soliton propagation in the presence of the detuning factor is firstly considered; then its solitons as well as Jacobi elliptic function solutions are obtained systematically using a modified Jacobi elliptic expansion method. In special cases, several dark and bright soliton solutions to the CGL equation are retrieved when the modulus of ellipticity approaches unity. The results presented in the current work can help to complete previous studies on the complex Ginzburg-Landau equation. | en_US |
dc.description.publishedMonth | 6 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Hosseini, Kamyar...et al. (2020). "Solitons and Jacobi Elliptic Function Solutions to the Complex Ginzburg–Landau Equation", Frontiers in Physics, Vol. 8. | en_US |
dc.identifier.doi | 10.3389/fphy.2020.00225 | |
dc.identifier.issn | 2296-424X | |
dc.identifier.scopus | 2-s2.0-85087898015 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3389/fphy.2020.00225 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:000615898900001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Frontiers Media Sa | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 26 | |
dc.subject | Complex Ginzburg-Landau Equation | en_US |
dc.subject | Detuning Factor | en_US |
dc.subject | Modified Jacobi Elliptic Expansion Method | en_US |
dc.subject | Solitons | en_US |
dc.subject | Jacobi Elliptic Function Solutions | en_US |
dc.title | Solitons and Jacobi Elliptic Function Solutions to the Complex Ginzburg–Landau Equation | tr_TR |
dc.title | Solitons and Jacobi Elliptic Function Solutions To the Complex Ginzburg-Landau Equation | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 26 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |