Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Stochastic Fractional Integral and Related Inequalities of Jensen-Mercer and Hermite-Hadamard Type for Convex Stochastic Processes

dc.contributor.author Sahoo, Soubhagya Kumar
dc.contributor.author Nisar, Kottakkaran Sooppy
dc.contributor.author Treanta, Savin
dc.contributor.author Emadifar, Homan
dc.contributor.author Botmart, Thongchai
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-12T11:50:11Z
dc.date.accessioned 2025-09-18T12:49:30Z
dc.date.available 2024-01-12T11:50:11Z
dc.date.available 2025-09-18T12:49:30Z
dc.date.issued 2023
dc.description.abstract In this investigation, we unfold the Jensen-Mercer (J - M) inequality for convex stochastic processes via a new fractional integral operator. The incorporation of convex stochastic processes, the J - M inequality and a fractional integral operator having an exponential kernel brings a new direction to the theory of inequalities. With this in mind, estimations of Hermite-Hadamard-Mercer (H - H - M)-type fractional inequalities involving convex stochastic processes are presented. In the context of the new fractional integral operator, we also investigate a novel identity for differentiable mappings. Then, a new related H - H - M-type inequality is presented using this identity as an auxiliary result. Applications to special means and matrices are also presented. These findings are particularly appealing from the perspective of optimization, as they provide a larger context to analyze optimization and mathematical programming problems. en_US
dc.identifier.citation Jarad, Fahd;...et.al. (2023). "New stochastic fractional integral and related inequalities of Jensen–Mercer and Hermite–Hadamard–Mercer type for convex stochastic processes", Journal of Inequalities and Applications, Vol.2023, no.1. en_US
dc.identifier.doi 10.1186/s13660-023-02944-y
dc.identifier.issn 1029-242X
dc.identifier.scopus 2-s2.0-85152680785
dc.identifier.uri https://doi.org/10.1186/s13660-023-02944-y
dc.identifier.uri https://hdl.handle.net/123456789/12367
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Convex Stochastic Process en_US
dc.subject Hermite-Hadamard-Mercer Inequality en_US
dc.subject Fractional Integral Operator en_US
dc.subject Exponential Kernel en_US
dc.title New Stochastic Fractional Integral and Related Inequalities of Jensen-Mercer and Hermite-Hadamard Type for Convex Stochastic Processes en_US
dc.title New stochastic fractional integral and related inequalities of Jensen–Mercer and Hermite–Hadamard–Mercer type for convex stochastic processes tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 15622742900
gdc.author.scopusid 57218897831
gdc.author.scopusid 56715663200
gdc.author.scopusid 55235013800
gdc.author.scopusid 57214220885
gdc.author.scopusid 16229703500
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Emadifar, Homan/Aad-7724-2022
gdc.author.wosid Treanta, Savin/O-4714-2014
gdc.author.wosid Sahoo, Soubhagya/Gpt-3087-2022
gdc.author.wosid Nisar, Kottakkaran/F-7559-2015
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Taichung 40402, Taiwan; [Sahoo, Soubhagya Kumar] CV Raman Global Univ, Dept Math, Bhubaneswar 752054, Orissa, India; [Nisar, Kottakkaran Sooppy] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Wadi Alkharj 11942, Saudi Arabia; [Treanta, Savin] Univ Politehn Bucuresti, Dept Appl Math, Bucharest 060042, Romania; [Treanta, Savin] Acad Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania; [Treanta, Savin] Univ Politehn Bucuresti, Fundamental Sci Appl Engn Res Ctr SFAI, Bucharest 060042, Romania; [Emadifar, Homan] Islamic Azad Univ, Dept Math, Hamedan Branch, Hamadan, Iran; [Botmart, Thongchai] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 2023 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4362670574
gdc.identifier.wos WOS:000964904300001
gdc.openalex.fwci 5.20712132
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 7
gdc.plumx.mendeley 2
gdc.plumx.newscount 1
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 8
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files