Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Multiple linear regression model under nonnormality

No Thumbnail Available

Date

2004

Authors

Islam, M. Qamarul
Tiku, Moti L.

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.

Description

Keywords

Hypothesis Testing, Least Squares, M Estimators, Modified Likelihood, Multiple Linear Regression, Nonnormality, Outliers, Robustness

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Islam, M. Qamarul; Tiku, Moti L. (2004). "Multiple linear regression model under nonnormality", Communications in Statistics - Theory and Methods, Vol.33, No.10, pp.2443-2467.

WoS Q

Scopus Q

Source

Communications in Statistics - Theory and Methods

Volume

33

Issue

10

Start Page

2443

End Page

2467