Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis

dc.contributor.author Nanehkaran, Yaser Ahangari
dc.contributor.author Pusatli, Tolga
dc.contributor.author Jin Chengyong
dc.contributor.author Chen, Junde
dc.contributor.author Cemiloglu, Ahmed
dc.contributor.author Azarafza, Mohammad
dc.contributor.author Derakhshani, Reza
dc.contributor.authorID 51704 tr_TR
dc.contributor.other 03.07. Yönetim Bilişim Sistemleri
dc.contributor.other 03. İktisadi ve İdari Birimler Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-03-01T07:05:01Z
dc.date.accessioned 2025-09-18T12:09:22Z
dc.date.available 2024-03-01T07:05:01Z
dc.date.available 2025-09-18T12:09:22Z
dc.date.issued 2022
dc.description Cemiloglu, Ahmed/0000-0003-2633-0924; Pusatli, Tolga/0000-0002-2303-8023; Derakhshani, Reza/0000-0001-7499-4384; Azarafza, Mohammad/0000-0001-7777-3800; Ahangari Nanehkaran, Yaser/0000-0002-8055-3195 en_US
dc.description.abstract Slope stability is the most important stage in the stabilization process for different scale slopes, and it is dictated by the factor of safety (FS). The FS is a relationship between the geotechnical characteristics and the slope behavior under various loading conditions. Thus, the application of an accurate procedure to estimate the FS can lead to a fast and precise decision during the stabilization process. In this regard, using computational models that can be operated accurately is strongly needed. The performance of five different machine learning models to predict the slope safety factors was investigated in this study, which included multilayer perceptron (MLP), support vector machines (SVM), k-nearest neighbors (k-NN), decision tree (DT), and random forest (RF). The main objective of this article is to evaluate and optimize the various machine learning-based predictive models regarding FS calculations, which play a key role in conducting appropriate stabilization methods and stabilizing the slopes. As input to the predictive models, geo-engineering index parameters, such as slope height (H), total slope angle (beta), dry density (gamma(d)), cohesion (c), and internal friction angle (phi), which were estimated for 70 slopes in the South Pars region (southwest of Iran), were considered to predict the FS properly. To prepare the training and testing data sets from the main database, the primary set was randomly divided and applied to all predictive models. The predicted FS results were obtained for testing (30% of the primary data set) and training (70% of the primary data set) for all MLP, SVM, k-NN, DT, and RF models. The models were verified by using a confusion matrix and errors table to conclude the accuracy evaluation indexes (i.e., accuracy, precision, recall, and f1-score), mean squared error (MSE), mean absolute error (MAE), and root mean square error (RMSE). According to the results of this study, the MLP model had the highest evaluation with a precision of 0.938 and an accuracy of 0.90. In addition, the estimated error rate for the MLP model was MAE = 0.103367, MSE = 0.102566, and RMSE = 0.098470. en_US
dc.description.publishedMonth 11
dc.identifier.citation Ahangari Nanehkaran, Yaser,...et.al. (2022). " Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis", Water (Switzerland), Vol.14, No.22. en_US
dc.identifier.doi 10.3390/w14223743
dc.identifier.issn 2073-4441
dc.identifier.scopus 2-s2.0-85142458066
dc.identifier.uri https://doi.org/10.3390/w14223743
dc.identifier.uri https://hdl.handle.net/123456789/11378
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Slope Stability en_US
dc.subject Factor Of Safety en_US
dc.subject Machine Learning en_US
dc.subject Prediction en_US
dc.subject Soil Slope en_US
dc.title Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis en_US
dc.title Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Cemiloglu, Ahmed/0000-0003-2633-0924
gdc.author.id Pusatli, Tolga/0000-0002-2303-8023
gdc.author.id Derakhshani, Reza/0000-0001-7499-4384
gdc.author.id Azarafza, Mohammad/0000-0001-7777-3800
gdc.author.id Ahangari Nanehkaran, Yaser/0000-0002-8055-3195
gdc.author.institutional Pusatlı, Özgür Tolga
gdc.author.scopusid 59663160000
gdc.author.scopusid 57821219800
gdc.author.scopusid 57976384900
gdc.author.scopusid 57201793640
gdc.author.scopusid 58513037700
gdc.author.scopusid 57189219637
gdc.author.wosid Azarafza, Mohammad/Aap-2136-2020
gdc.author.wosid Cemiloğlu, Ahmed/Hjz-4981-2023
gdc.author.wosid Nanehkaran, Yaser/Aan-6150-2021
gdc.author.wosid Derakhshani, Reza/P-1194-2019
gdc.author.wosid Jin, Chengyong/Hsi-1825-2023
gdc.author.wosid Pusatli, Tolga/C-6912-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nanehkaran, Yaser Ahangari; Cemiloglu, Ahmed] Yancheng Teachers Univ, Sch Informat Engn, Yancheng 224002, Peoples R China; [Pusatli, Tolga] Cankaya Univ, Dept Management Informat Syst, TR-06790 Ankara, Turkey; [Jin Chengyong] Yang En Univ, Acad Engn & Technol, Quanzhou 362014, Peoples R China; [Chen, Junde] Xiangtan Univ, Dept Elect Commerce, Xiangtan 411100, Peoples R China; [Azarafza, Mohammad] Univ Tabriz, Dept Civil Engn, Tabriz 5166616471, Iran; [Derakhshani, Reza] Univ Utrecht, Dept Earth Sci, NL-3584 CB Utrecht, Netherlands en_US
gdc.description.issue 22 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 14 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4309284651
gdc.identifier.wos WOS:000887798800001
gdc.openalex.fwci 32.80378354
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 56
gdc.plumx.crossrefcites 79
gdc.plumx.facebookshareslikecount 18
gdc.plumx.mendeley 103
gdc.plumx.newscount 1
gdc.plumx.scopuscites 84
gdc.scopus.citedcount 82
gdc.wos.citedcount 73
relation.isAuthorOfPublication 14474dfb-07d3-4bb1-b133-a7290cc5be9f
relation.isAuthorOfPublication.latestForDiscovery 14474dfb-07d3-4bb1-b133-a7290cc5be9f
relation.isOrgUnitOfPublication 907f32e8-a2ec-47a0-b274-af0eefc912b5
relation.isOrgUnitOfPublication da4f5829-5e26-41bc-9c75-12779175bb39
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 907f32e8-a2ec-47a0-b274-af0eefc912b5

Files