Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Critical Decision Making for Rehabilitation of Hydroelectric Power Plants

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Due to their diminishing performance, reliability, and maintenance requirements, there has been a rise in the demand for the restoration and renovation of old hydroelectric power facilities in recent decades. Prior to initiating a rehabilitation program, it is crucial to establish a comprehensive understanding of the power plant's current state. Failure to do so may result in unnecessary expenses with minimal or no improvements. This article presents a systematic rehabilitation methodology specifically tailored for Francis turbines, encompassing a methodological approach for condition assessment, performance testing, and evaluation of rehabilitation potential using site measurements and CFD analysis, and a comprehensive decision-making process. To evaluate the off-design performance of the turbines, a series of simulations are conducted for 40 different flow rate and head combinations, generating a hill chart for comprehensive evaluation. Various parameters that significantly impact the critical decision-making process are thoroughly investigated. The validity of the reverse engineering-based CFD methodology is verified, demonstrating a minor difference of 0.41% and 0.40% in efficiency and power, respectively, between the RE runner and actual runner CFD results. The optimal efficiency point is determined at a flow rate of 35.035 m(3)/s, achieving an efficiency of 94.07%, while the design point exhibits an efficiency of 93.27% with a flow rate of 38.6 m(3)/s. Cavitation is observed in the turbine runner, occupying 27% of the blade suction area at 110% loading. The developed rehabilitation methodology equips decision-makers with essential information to prioritize key issues and determine whether a full-scale or component-based rehabilitation program is necessary. By following this systematic approach, hydroelectric power plants can efficiently address the challenges associated with aging Francis turbines and optimize their rehabilitation efforts.

Description

Ulucak, Oguzhan/0000-0002-2063-2553

Keywords

Reverse Engineering, Cfd, Francis Turbine, Performance Estimation, Transient Simulation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Celebioglu, Kutay...et.al. (2023). "Critical decision making for rehabilitation of hydroelectric power plants", Energy Sources, Part A: Recovery, Utilization and Environmental Effects, Vol.45, No.4, pp.10073-10106.

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
1

Source

Volume

45

Issue

4

Start Page

10073

End Page

10106
PlumX Metrics
Citations

CrossRef : 1

Scopus : 2

Captures

Mendeley Readers : 2

SCOPUS™ Citations

2

checked on Nov 24, 2025

Web of Science™ Citations

2

checked on Nov 24, 2025

Page Views

1

checked on Nov 24, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.23102573

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo