Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Statistical Analysis of Gait Data To Assist Clinical Decision Making

dc.authorscopusid 25929239500
dc.authorscopusid 7005182525
dc.contributor.author Sen Koktas, Nigar
dc.contributor.author Duin, Robert P. W.
dc.date.accessioned 2025-05-13T13:44:49Z
dc.date.available 2025-05-13T13:44:49Z
dc.date.issued 2010
dc.department Çankaya University en_US
dc.department-temp [Sen Koktas, Nigar] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Duin, Robert P. W.] Delft Univ Technol, Fac Elect Engn, Math & Comp Sci, Delft, Netherlands en_US
dc.description IBM Almaden Research Center en_US
dc.description.abstract Gait analysis is used for non-automated and automated diagnosis of various neuromuskuloskeletal abnormalities. Automated systems are important in assisting physicians for diagnosis of various diseases. This study presents preliminary steps of designing a clinical decision support system for semi-automated diagnosis of knee illnesses by using temporal gait data. This study compares the gait of Ill patients with 110 age-matched normal subjects. Different feature reduction techniques, (FFT, averaging and PCA) are compared by the Mahalanobis Distance criterion and by performances of well known classifiers. The feature selection criteria used reveals that the gait measurements for different parts of the body such as knee or hip to be more effective for detection of the illnesses. Then, a set of classifiers is tested by a ten-fold cross validation approach on all datasets. It is observed that average based datasets performed better than FFT applied ones for almost all classifiers while PCA applied dataset performed better for linear classifiers. In general, nonlinear classifiers performed quite well (best error rate is about 0.035) and better than the linear ones. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) en_US
dc.description.sponsorship This study is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1007/978-3-642-11769-5_6
dc.identifier.endpage + en_US
dc.identifier.isbn 9783642117688
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-77951131073
dc.identifier.scopusquality Q3
dc.identifier.startpage 61 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-642-11769-5_6
dc.identifier.uri https://hdl.handle.net/20.500.12416/9972
dc.identifier.volume 5853 en_US
dc.identifier.wos WOS:000278559600006
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer-verlag Berlin en_US
dc.relation.ispartof 1st MICCAI International Workshop on Medical Content-Based Retrieval for Clinical Decision Support -- SEP 20, 2009 -- London, ENGLAND en_US
dc.relation.ispartofseries Lecture Notes in Computer Science
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Gait Analysis en_US
dc.subject Statistical Pattern Classifiers en_US
dc.subject Clinical Decision Support Systems en_US
dc.title Statistical Analysis of Gait Data To Assist Clinical Decision Making en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication

Files