Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Artificial neural network approach for a class of fractional ordinary differential equation

dc.contributor.authorJafarian, Ahmad
dc.contributor.authorMokhtarpour, Masoumeh
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-03-18T07:50:56Z
dc.date.available2020-03-18T07:50:56Z
dc.date.issued2017
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe essential characteristic of artificial neural networks which against the logistic traditional systems is a data-based approach and has led a number of higher education scholars to investigate its efficacy, during the past few decades. The aim of this paper was concerned with the application of neural networks to approximate series solutions of a class of initial value ordinary differential equations of fractional orders, over a bounded domain. The proposed technique uses a suitable truncated power series of the solution function and transforms the original differential equation in a minimization problem. Then, the minimization problem is solved using an accurate neural network model to compute the parameters with high accuracy. Numerical results are given to validate the iterative method.en_US
dc.description.publishedMonth4
dc.identifier.citationJafarian, Ahma; Mokhtarpour, Masoumeh; Baleanu, Dumitru, "Artificial neural network approach for a class of fractional ordinary differential equation", Neural Computing&Applications, Vol.28, No.4, pp.765-773, (2017).en_US
dc.identifier.doi10.1007/s00521-015-2104-8
dc.identifier.endpage773en_US
dc.identifier.issn0941-0643
dc.identifier.issue4en_US
dc.identifier.startpage765en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/2663
dc.identifier.volume28en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Computing&Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFeed-Forward Neural Networken_US
dc.subjectFractional Differential Equationen_US
dc.subjectApproximate Solutionen_US
dc.subjectBackpropagation Learning Algorithmen_US
dc.titleArtificial neural network approach for a class of fractional ordinary differential equationtr_TR
dc.titleArtificial Neural Network Approach for a Class of Fractional Ordinary Differential Equationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: