Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE

dc.authorid Hammouch, Zakia/0000-0001-7349-6922
dc.authorid Karaca, Yeliz/0000-0001-8725-6719
dc.authorscopusid 57045880100
dc.authorscopusid 57200041124
dc.authorscopusid 56585856100
dc.authorscopusid 12768922000
dc.authorscopusid 7005872966
dc.authorscopusid 9839077200
dc.authorwosid Karaca, Yeliz/W-1525-2019
dc.authorwosid Rashid, Saima/Aaf-7976-2021
dc.authorwosid Hammouch, Zakia/D-3532-2011
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Al-Qurashi, Maysaa
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rashid, Saima
dc.contributor.author Karaca, Yeliz
dc.contributor.author Hammouch, Zakia
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Chu, Yu-Ming
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-09T12:32:32Z
dc.date.available 2022-03-09T12:32:32Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Al-Qurashi, Maysaa] King Saud Univ, Dept Math, POB 22452, Riyadh 11495, Saudi Arabia; [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Karaca, Yeliz] Univ Massachusetts, Sch Med, Worcester, MA 01655 USA; [Hammouch, Zakia] Thu Dau Mot Univ, Div Appl Math, Binh Duong, Vietnam; [Hammouch, Zakia] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung 40402, Taiwan; [Hammouch, Zakia] Moulay Ismail Univ Meknes, Ecole Normale Super, Meknes 5000, Morocco; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China en_US
dc.description Hammouch, Zakia/0000-0001-7349-6922; Karaca, Yeliz/0000-0001-8725-6719 en_US
dc.description.abstract A user-friendly approach depending on nonlocal kernel has been constituted in this study to model nonlocal behaviors of fractional differential and difference equations, which is known as a generalized proportional fractional operator in the Hilfer sense. It is deemed, for differentiable functions, by a fractional integral operator applied to the derivative of a function having an exponential function in the kernel. This operator generalizes a novel version of Cebysev-type inequality in two and three variables sense and furthers the result of existing literature as a particular case of the Cebysev inequality is discussed. Some novel special cases are also apprehended and compared with existing results. The outcome obtained by this study is very broad in nature and fits in terms of yielding an enormous number of relating results simply by practicing the proportionality indices included therein. Furthermore, the outcome of our study demonstrates that the proposed plans are of significant importance and computationally appealing to deal with comparable sorts of differential equations. Taken together, the results can serve as efficient and robust means for the purpose of investigating specific classes of integrodifferential equations. en_US
dc.description.publishedMonth 8
dc.description.sponsorship National Natural Science Foundation of China [11971142, 61673169, 11701176, 11626101, 11601485, 11871202] en_US
dc.description.sponsorship The authors would like to thank the anonymous referees for their valuable suggestions and comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11701176, 11626101, 11601485 and 11871202). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Al-Qurashi, Maysaa...et al. (2021). "ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE", Fractals-Complex Geometry Patterns and Scaling in Nature and Society, Vol. 29, No. 05. en_US
dc.identifier.doi 10.1142/S0218348X21400272
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85103263172
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1142/S0218348X21400272
dc.identifier.volume 29 en_US
dc.identifier.wos WOS:000683456000020
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 19
dc.subject Integral Inequality en_US
dc.subject Generalized Proportional Fractional Operator In The Hilfer Sense en_US
dc.subject Cebysev Inequality en_US
dc.subject Generalized Riemann-Liouville Fractional Integral en_US
dc.title ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE tr_TR
dc.title Achieving More Precise Bounds Based on Double and Triple Integral as Proposed by Generalized Proportional Fractional Operators in the Hilfer Sense en_US
dc.type Article en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
254.21 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: