A Fractional Derivative Inclusion Problem Via an Integral Boundary Condition
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Moghaddam, Mehdi | |
| dc.contributor.author | Mohammadi, Hakimeh | |
| dc.contributor.author | Rezapour, Shahram | |
| dc.contributor.other | Matematik | |
| dc.date.accessioned | 2025-09-23T12:51:10Z | |
| dc.date.available | 2025-09-23T12:51:10Z | |
| dc.date.issued | 2016 | |
| dc.description | Mohammadi, Hakimeh/0000-0002-7492-9782 | en_US |
| dc.description.abstract | We investigate the existence of solutions for the fractional differential inclusion (c)D(alpha)x(t) is an element of F(t, x(t)) (equipped with the boundary value problems x(0) = 0 and x(1) = integral(eta)(0) x(s)ds, where 0 < eta < 1, 1 < alpha <= 2, D-c(alpha) is the standard Caputo differentiation and F : [0, 1] x R -> 2(R) is a compact valued multifunction. An illustrative example is also discussed. | en_US |
| dc.description.publishedMonth | 9 | |
| dc.identifier.citation | Baleanu, D...et al. (2016). A fractional derivative inclusion problem via an integral boundary condition. Journal of Computational Analysis and Applications, 21(3), 504-514. | en_US |
| dc.identifier.issn | 1521-1398 | |
| dc.identifier.issn | 1572-9206 | |
| dc.identifier.scopus | 2-s2.0-85014537599 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15605 | |
| dc.language.iso | en | en_US |
| dc.publisher | Eudoxus Press, Llc | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fixed Point | en_US |
| dc.subject | Fractional Differential Inclusion | en_US |
| dc.subject | Integral Boundary Value Problem | en_US |
| dc.title | A Fractional Derivative Inclusion Problem Via an Integral Boundary Condition | en_US |
| dc.title | A fractional derivative inclusion problem via an integral boundary condition | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Mohammadi, Hakimeh/0000-0002-7492-9782 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57615240800 | |
| gdc.author.scopusid | 57213022302 | |
| gdc.author.scopusid | 55935081600 | |
| gdc.author.wosid | Rezapour, Shahram/N-4883-2016 | |
| gdc.author.wosid | Mohammadi, Hakimeh/Aao-4225-2020 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ogretmenler Cad 14, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Moghaddam, Mehdi] Islamic Azad Univ, Dept Math, Miandoab Branch, Miandoab, Iran; [Mohammadi, Hakimeh] Islamic Azad Univ, Dept Math, Bonab Branch, Bonab, Iran; [Rezapour, Shahram] Azarbaijan Shahid Madani Univ, Dept Math, Azarshahr, Tabriz, Iran | en_US |
| gdc.description.endpage | 514 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 504 | en_US |
| gdc.description.volume | 21 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.wos | WOS:000368960100009 | |
| gdc.scopus.citedcount | 6 | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |