Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Non-linear soliton solutions of perturbed Chen-Lee-Liu model by Φ 6- model expansion approach

dc.authorid Asjad, Muhammad Imran/0000-0002-1484-5114
dc.authorid Ali Faridi, Waqas/0000-0003-0713-5365
dc.authorscopusid 57225192008
dc.authorscopusid 57897458100
dc.authorscopusid 15622742900
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Faridi, Waqas Ali Faridi/Ago-2432-2022
dc.authorwosid Asjad, Muhammad/X-1799-2019
dc.contributor.author Faridi, Waqas Ali
dc.contributor.author Jarad, Fahd
dc.contributor.author Asjad, Muhammad Imran
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-04-25T07:44:36Z
dc.date.available 2024-04-25T07:44:36Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Faridi, Waqas Ali; Asjad, Muhammad Imran] Univ Management & Technol, Dept Math, Lahore, Pakistan; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan en_US
dc.description Asjad, Muhammad Imran/0000-0002-1484-5114; Ali Faridi, Waqas/0000-0003-0713-5365 en_US
dc.description.abstract This study deals with the perturbed Chen-Lee-Liu governing mode which portrays the propagating phenomena of the optical pulses in the discipline of optical fiber and plasma. The Cauchy problem for this equation cannot be solved by the inverse scattering transform and we use an analytical approach to find traveling wave solutions. One of the generalized techniques phi(6) -model expansion method is exerted to find new solitary wave profiles. It is an effective, and reliable technique that provides generalized solitonic wave profiles including numerous types of soliton families. As a result, solitonic wave patterns attain, like Jacobi elliptic function, periodic, dark, bright, singular, dark-bright, exponential, trigonometric, and rational solitonic structures, etc. The constraint corresponding to each obtained solution provides the guarantee of the existence of the solitary wave solutions. The graphical 2-D, 3-D, and contour visualization of the obtained results is presented to express the pulse propagation behaviors by assuming the appropriate values of the involved parameters. The phi(6) -model expansion method is simple which can be easily applied to other complex non-linear models and get solitary wave structures. en_US
dc.description.publishedMonth 10
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Faridi, Waqas Ali; Asjad, Muhammad Imran; Jarad, Fahd. (2022). "Non-linear soliton solutions of perturbed Chen-Lee-Liu model by Φ 6- model expansion approach", Optical and Quantum Electronics, Vol.54, No.10. en_US
dc.identifier.doi 10.1007/s11082-022-04077-w
dc.identifier.issn 0306-8919
dc.identifier.issn 1572-817X
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-85138627564
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s11082-022-04077-w
dc.identifier.volume 54 en_US
dc.identifier.wos WOS:000847376000014
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 45
dc.subject Analytical Approach en_US
dc.subject Optical Pulse en_US
dc.subject Traveling Wave Solutions en_US
dc.subject Jacobi Elliptic Function en_US
dc.title Non-linear soliton solutions of perturbed Chen-Lee-Liu model by Φ 6- model expansion approach tr_TR
dc.title Non-Linear Soliton Solutions of Perturbed Chen-Lee Model by Φ<sup>6</Sup> -Model Expansion Approach en_US
dc.type Article en_US
dc.wos.citedbyCount 35
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: