Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Asymptotic Integration of (1 + Α) -Order Fractional Differential Equations

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

We establish the long-time asymptotic formula of solutions to the (1+α)-order fractional differential equation 0iOt1+αx+a(t)x=0, t>0, under some simple restrictions on the functional coefficient a(t), where 0iOt1+α is one of the fractional differential operators 0Dtα(x′), (0Dtαx)′= 0Dt1+αx and 0Dtα(tx′-x). Here, 0Dtα designates the Riemann-Liouville derivative of order α∈(0,1). The asymptotic formula reads as [b+O(1)] ·xsmall+c·xlarge as t→+∞ for given b, c∈R, where xsmall and xlarge represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation 0iOt1+αx=0, t>0

Description

Keywords

Linear Fractional Differential Equation, Asymptotic Integration

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Bleanu, D.; Mustafa, O.G.; Agarwal, R.P.,"Asymptotic Integration of (1 + Α) -Order Fractional Differential Equations",Vol. 62, No. 3, pp. 1492-1500, (2011).

WoS Q

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
26

Source

Volume

62

Issue

3

Start Page

1492

End Page

1500
PlumX Metrics
Citations

CrossRef : 25

Scopus : 30

Captures

Mendeley Readers : 11

Page Views

536

checked on Nov 24, 2025

Downloads

486

checked on Nov 24, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
5.98824427

Sustainable Development Goals

SDG data is not available