Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

More efficient estimates via ℏ-discrete fractional calculus theory and applications

dc.contributor.authorJarad, Fahd
dc.contributor.authorSultana, Sobia
dc.contributor.authorJarad, Fahd
dc.contributor.authorJafari, Hossein
dc.contributor.authorHamed, Y.S.
dc.contributor.authorID234808tr_TR
dc.date.accessioned2022-06-20T12:48:53Z
dc.date.available2022-06-20T12:48:53Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractDiscrete fractional calculus (DFC) is continuously spreading in the engineering practice, neural networks, chaotic maps, and image encryption, which is appropriately assumed for discrete-time modelling in continuum problems. First, we start with a novel discrete ℏ-proportional fractional sum defined on the time scale ℏZ so as to give the premise to the more broad and complex structures, for example, the suitably accustomed transformations conjuring the property of observing the new chaotic behaviors of the logistic map. Here, we aim to present the novel discrete versions of Grüss and certain other associated variants by employing discrete ℏ-proportional fractional sums are established. Moreover, several novel consequences are recaptured by the ℏ-discrete fractional sums. The present study deals with the modification of Young, weighted-arithmetic and geometric mean formula by taking into account changes in the exponential function in the kernel represented by the parameters of the operator, varying delivery noted outcomes. In addition, two illustrative examples are apprehended to demonstrate the applicability and efficiency of the proposed technique. © 2021 Elsevier Ltden_US
dc.description.publishedMonth6
dc.identifier.citationRashid, Saima...et al. (2021). "More efficient estimates via ℏ-discrete fractional calculus theory and applications", Chaos, Solitons and Fractals, Vol. 147.en_US
dc.identifier.doi10.1016/j.chaos.2021.110981
dc.identifier.issn0960-0779
dc.identifier.urihttps://hdl.handle.net/20.500.12416/5679
dc.identifier.volume147en_US
dc.language.isoenen_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArithmetic-Geometric Mean Inequalityen_US
dc.subjectDiscrete ℏ-Proportional Fractional Operatoren_US
dc.subjectGrüss Inequalityen_US
dc.subjectYoung Inequalityen_US
dc.subjectYoung's Inequalityen_US
dc.subjectℏ-Discrete Fractional Operatorsen_US
dc.titleMore efficient estimates via ℏ-discrete fractional calculus theory and applicationstr_TR
dc.titleMore Efficient Estimates Via ℏ-Discrete Fractional Calculus Theory and Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscoveryc818455d-5734-4abd-8d29-9383dae37406

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: