Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new Hamiltonian system

dc.contributor.authorUğurlu, Ekin
dc.contributor.authorID238990tr_TR
dc.date.accessioned2023-02-14T07:57:30Z
dc.date.available2023-02-14T07:57:30Z
dc.date.issued2020
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThis paper aims to share a new first-order differential equation that contains the continuous analogous of the orthogonal polynomials on the unit-circle. We introduce some basic results on the system and solutions of the system. Using nested-circle approach we introduce the possible number of square-integrable solutions of the system. At the end of the paper we share a limit-point criteria for the two-dimensional system of equations.en_US
dc.description.publishedMonth11
dc.identifier.citationUğurlu, Ekin (2020). "A new Hamiltonian system", Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, Vol. 491, No. 2.en_US
dc.identifier.doi10.1016/j.jmaa.2020.124392
dc.identifier.issn0022-247X
dc.identifier.issue2en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/6224
dc.identifier.volume491en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFirst-Order Systemen_US
dc.subjectOrthogonal Polynomials on The Unit Circleen_US
dc.subjectWeyl's Theoryen_US
dc.titleA new Hamiltonian systemtr_TR
dc.titleA New Hamiltonian Systemen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3ed3f5e7-664c-4705-8ea5-43fa2a1f53d3
relation.isAuthorOfPublication.latestForDiscovery3ed3f5e7-664c-4705-8ea5-43fa2a1f53d3

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: