Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Creating consensus group using online learning based reputation in blockchain networks

dc.authorscopusid 43261050400
dc.authorscopusid 56166009200
dc.authorscopusid 56823540400
dc.authorscopusid 55902090100
dc.contributor.author Bugday, Ahmet
dc.contributor.author Ozsoy, Adnan
dc.contributor.author Oztaner, Serdar Murat
dc.contributor.author Sever, Hayri
dc.contributor.authorID 11916 tr_TR
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2020-01-31T11:54:09Z
dc.date.available 2020-01-31T11:54:09Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Bugday, Ahmet; Ozsoy, Adnan] Hacettepe Univ, Comp Engn, Ankara, Turkey; [Oztaner, Serdar Murat] Cent Bank Republ Turkey, Payment Syst Dept, Ankara, Turkey; [Sever, Hayri] Cankaya Univ, Comp Engn, Ankara, Turkey en_US
dc.description.abstract One of the biggest challenges to blockchain technology is the scalability problem. The choice of consensus algorithm is critical to the practical solution of the scalability problem. To increase scalability, Byzantine Fault Tolerance (BFT) based methods have been most widely applied. This study proposes a new model instead of Proof of Work (PoW) for forming the consensus group that allows the use of BFT based methods in the public blockchain network. The proposed model uses the adaptive hedge method, which is a decision-theoretic online learning algorithm (Qi et al., 2016). The reputation value is calculated for the nodes that want to participate in the consensus committee, and nodes with high reputation values are selected for the consensus committee to reduce the chances of the nodes in the consensus committee being harmful. Since the study focuses on the formation of the consensus group, a simulated blockchain network is used to test the proposed model more effectively. Test results indicate that the proposed model, which is a new approach in the literature making use of machine learning for the construction of consensus committee, successfully selects the node with the higher reputation for the consensus group. (C) 2019 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 10
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Bugday, Ahmet...et al. (2019). "Creating consensus group using online learning based reputation in blockchain networks", Pervasive and Mobile Computing, Vol. 59. en_US
dc.identifier.doi 10.1016/j.pmcj.2019.101056
dc.identifier.issn 1574-1192
dc.identifier.issn 1873-1589
dc.identifier.scopus 2-s2.0-85069678960
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.pmcj.2019.101056
dc.identifier.volume 59 en_US
dc.identifier.wos WOS:000490750700004
dc.identifier.wosquality Q2
dc.institutionauthor Sever, Hayri
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 29
dc.subject Consensus Committee en_US
dc.subject The Blockchain en_US
dc.subject Bft en_US
dc.subject Pbft en_US
dc.subject Hedged Learning en_US
dc.title Creating consensus group using online learning based reputation in blockchain networks tr_TR
dc.title Creating Consensus Group Using Online Learning Based Reputation in Blockchain Networks en_US
dc.type Article en_US
dc.wos.citedbyCount 20
dspace.entity.type Publication
relation.isAuthorOfPublication a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isAuthorOfPublication.latestForDiscovery a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: