Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Autoregressive Models With Stochastic Design Variables and Nonnormal İnnovations

dc.contributor.authorTürker Bayrak, Özlem
dc.contributor.authorDener Akkaya, Ayşen
dc.contributor.authorID56416tr_TR
dc.contributor.authorID2337tr_TR
dc.date.accessioned2020-05-16T15:34:52Z
dc.date.available2020-05-16T15:34:52Z
dc.date.issued2011
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.description.abstractIn autoregression models the design variable has traditionally been assumed to be non-stochastic and innovations are normal. In most real life situations, however, the design variable is stochastic having a non-normal distribution as the innovations. Modified maximum likelihood method is utilized to estimate unknown parameters in such situations. Closed form estimators are obtained and shown to be efficient and robust.en_US
dc.identifier.citationBayrak, O.T.; Akkaya, A.D.,"Autoregressive Models With Stochastic Design Variables and Nonnormal İnnovations",International Conference On Applied Mathematics, Simulation, Modelling - Proceedings, (2011).en_US
dc.identifier.endpage201en_US
dc.identifier.issn17924332
dc.identifier.issn978-161804016-9
dc.identifier.startpage197en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/3876
dc.language.isoenen_US
dc.relation.ispartofInternational Conference On Applied Mathematics, Simulation, Modelling - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonnormalityen_US
dc.subjectModified Maximum Likelihooden_US
dc.subjectStochastic Designen_US
dc.subjectRobustnessen_US
dc.titleAutoregressive Models With Stochastic Design Variables and Nonnormal İnnovationstr_TR
dc.titleAutoregressive Models With Stochastic Design Variables and Nonnormal İnnovationsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: