Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorMaleki, Mohsen
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorNguye, Vu-Thanh
dc.contributor.authorPho, Kim-Hung
dc.contributor.authorID56389tr_TR
dc.date.accessioned2021-01-07T11:41:59Z
dc.date.available2021-01-07T11:41:59Z
dc.date.issued2020
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, a Bayesian analysis of finite mixture autoregressive (MAR) models based on the assumption of scale mixtures of skew-normal (SMSN) innovations (called SMSN-MAR) is considered. This model is not simultaneously sensitive to outliers, as the celebrated SMSN distributions, because the proposed MAR model covers the lightly/heavily-tailed symmetric and asymmetric innovations. This model allows us to have robust inferences on some non-linear time series with skewness and heavy tails. Classical inferences about the mixture models have some problematic issues that can be solved using Bayesian approaches. The stochastic representation of the SMSN family allows us to develop a Bayesian analysis considering the informative prior distributions in the proposed model. Some simulations and real data are also presented to illustrate the usefulness of the proposed models.en_US
dc.description.publishedMonth6
dc.identifier.citationMahmoudi, Mohammad Reza...et al. (2020)."A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models", Symmetry-Basel, Vol. 12, No. 6.en_US
dc.identifier.doi10.3390/sym12060929
dc.identifier.issn2073-8994
dc.identifier.issue6en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/4448
dc.identifier.volume12en_US
dc.language.isoenen_US
dc.relation.ispartofSymmetry-Baselen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGibbs Samplingen_US
dc.subjectMCMC Methoden_US
dc.subjectNon-Linear Time Seriesen_US
dc.subjectFinite Mixture Autoregressive Modelsen_US
dc.subjectSMSN Distributionsen_US
dc.titleA Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Modelstr_TR
dc.titleA Bayesian Approach To Heavy-Tailed Finite Mixture Autoregressive Modelsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
686.93 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: