Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models

dc.authorid Maleki, Mohsen/0000-0002-2774-2464
dc.authorid Pho, Kim-Hung/0000-0003-0410-8839
dc.authorid Pho, Kim Hung/0000-0001-9743-1306
dc.authorscopusid 56684432000
dc.authorscopusid 57214767247
dc.authorscopusid 7005872966
dc.authorscopusid 57218439634
dc.authorscopusid 57208444555
dc.authorwosid Mahmoudi, Mohammad Reza/Aax-4890-2020
dc.authorwosid Nguyen, Vu/Hgv-1806-2022
dc.authorwosid Maleki, Mohsen/L-9476-2019
dc.authorwosid Pho, Kim-Hung/Abi-4974-2020
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Pho, Kim-Hung/Aao-4536-2020
dc.contributor.author Mahmoudi, Mohammad Reza
dc.contributor.author Maleki, Mohsen
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Vu-Thanh Nguyen
dc.contributor.author Pho, Kim-Hung
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-01-07T11:41:59Z
dc.date.available 2021-01-07T11:41:59Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Mahmoudi, Mohammad Reza] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Mahmoudi, Mohammad Reza] Fasa Univ, Fac Sci, Dept Stat, Fasa 7461686131, Iran; [Maleki, Mohsen] Univ Isfahan, Dept Stat, Esfahan 8174673441, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Vu-Thanh Nguyen] Univ Econ & Law, Ho Chi Minh City 700000, Vietnam; [Pho, Kim-Hung] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City 758307, Vietnam en_US
dc.description Maleki, Mohsen/0000-0002-2774-2464; Pho, Kim-Hung/0000-0003-0410-8839; Pho, Kim Hung/0000-0001-9743-1306 en_US
dc.description.abstract In this paper, a Bayesian analysis of finite mixture autoregressive (MAR) models based on the assumption of scale mixtures of skew-normal (SMSN) innovations (called SMSN-MAR) is considered. This model is not simultaneously sensitive to outliers, as the celebrated SMSN distributions, because the proposed MAR model covers the lightly/heavily-tailed symmetric and asymmetric innovations. This model allows us to have robust inferences on some non-linear time series with skewness and heavy tails. Classical inferences about the mixture models have some problematic issues that can be solved using Bayesian approaches. The stochastic representation of the SMSN family allows us to develop a Bayesian analysis considering the informative prior distributions in the proposed model. Some simulations and real data are also presented to illustrate the usefulness of the proposed models. en_US
dc.description.publishedMonth 6
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Mahmoudi, Mohammad Reza...et al. (2020)."A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models", Symmetry-Basel, Vol. 12, No. 6. en_US
dc.identifier.doi 10.3390/sym12060929
dc.identifier.issn 2073-8994
dc.identifier.issn 2073-8994
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85089195675
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/sym12060929
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000550834100001
dc.identifier.wosquality Q2
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Symmetry en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject Gibbs Sampling en_US
dc.subject Mcmc Method en_US
dc.subject Non-Linear Time Series en_US
dc.subject Finite Mixture Autoregressive Models en_US
dc.subject Smsn Distributions en_US
dc.title A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models tr_TR
dc.title A Bayesian Approach To Heavy-Tailed Finite Mixture Autoregressive Models en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
686.93 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: