A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models
dc.authorid | Maleki, Mohsen/0000-0002-2774-2464 | |
dc.authorid | Pho, Kim-Hung/0000-0003-0410-8839 | |
dc.authorid | Pho, Kim Hung/0000-0001-9743-1306 | |
dc.authorscopusid | 56684432000 | |
dc.authorscopusid | 57214767247 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 57218439634 | |
dc.authorscopusid | 57208444555 | |
dc.authorwosid | Mahmoudi, Mohammad Reza/Aax-4890-2020 | |
dc.authorwosid | Nguyen, Vu/Hgv-1806-2022 | |
dc.authorwosid | Maleki, Mohsen/L-9476-2019 | |
dc.authorwosid | Pho, Kim-Hung/Abi-4974-2020 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Pho, Kim-Hung/Aao-4536-2020 | |
dc.contributor.author | Mahmoudi, Mohammad Reza | |
dc.contributor.author | Maleki, Mohsen | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Vu-Thanh Nguyen | |
dc.contributor.author | Pho, Kim-Hung | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2021-01-07T11:41:59Z | |
dc.date.available | 2021-01-07T11:41:59Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Mahmoudi, Mohammad Reza] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Mahmoudi, Mohammad Reza] Fasa Univ, Fac Sci, Dept Stat, Fasa 7461686131, Iran; [Maleki, Mohsen] Univ Isfahan, Dept Stat, Esfahan 8174673441, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Vu-Thanh Nguyen] Univ Econ & Law, Ho Chi Minh City 700000, Vietnam; [Pho, Kim-Hung] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City 758307, Vietnam | en_US |
dc.description | Maleki, Mohsen/0000-0002-2774-2464; Pho, Kim-Hung/0000-0003-0410-8839; Pho, Kim Hung/0000-0001-9743-1306 | en_US |
dc.description.abstract | In this paper, a Bayesian analysis of finite mixture autoregressive (MAR) models based on the assumption of scale mixtures of skew-normal (SMSN) innovations (called SMSN-MAR) is considered. This model is not simultaneously sensitive to outliers, as the celebrated SMSN distributions, because the proposed MAR model covers the lightly/heavily-tailed symmetric and asymmetric innovations. This model allows us to have robust inferences on some non-linear time series with skewness and heavy tails. Classical inferences about the mixture models have some problematic issues that can be solved using Bayesian approaches. The stochastic representation of the SMSN family allows us to develop a Bayesian analysis considering the informative prior distributions in the proposed model. Some simulations and real data are also presented to illustrate the usefulness of the proposed models. | en_US |
dc.description.publishedMonth | 6 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Mahmoudi, Mohammad Reza...et al. (2020)."A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models", Symmetry-Basel, Vol. 12, No. 6. | en_US |
dc.identifier.doi | 10.3390/sym12060929 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85089195675 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/sym12060929 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000550834100001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Symmetry | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 8 | |
dc.subject | Gibbs Sampling | en_US |
dc.subject | Mcmc Method | en_US |
dc.subject | Non-Linear Time Series | en_US |
dc.subject | Finite Mixture Autoregressive Models | en_US |
dc.subject | Smsn Distributions | en_US |
dc.title | A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models | tr_TR |
dc.title | A Bayesian Approach To Heavy-Tailed Finite Mixture Autoregressive Models | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 7 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |