Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A New Hybrid Algorithm for Continuous Optimization Problem

dc.contributor.author Jafarian, Ahmad
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Farnad, Behnam
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-03-31T20:01:10Z
dc.date.accessioned 2025-09-18T15:44:26Z
dc.date.available 2020-03-31T20:01:10Z
dc.date.available 2025-09-18T15:44:26Z
dc.date.issued 2018
dc.description Farnad, Behnam/0000-0002-3558-3432 en_US
dc.description.abstract This paper applies a new hybrid method by a combination of three population base algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS). The proposed method has been inspired from natural selection process and it completes this process in GA by using the PSO and SOS. It tends to minimize the execution time and in addition to reduce the complexity. Symbiotic organisms search is a robust and powerful metaheuristic algorithm which has attracted increasing attention in recent decades. There are three alternative phases in the proposed algorithm: GA, which develops and selects best population for the next phases, PSO, which gets experiences for each appropriate solution and updates them as well and SOS, which benefits from previous phases and performs symbiotic interaction update phases in the real-world population. The proposed algorithm was tested on the set of best known unimodal and multimodal benchmark functions in various dimensions. It has further been evaluated in, the experiment on the clustering of benchmark datasets. The obtained results from basic and non-parametric statistical tests confirmed that this hybrid method dominates in terms of convergence, execution time, success rate. It optimizes the high dimensional and complex functions Rosenbrock and Griewank up to 10(-330) accuracy in less than 3 s, outperforming other known algorithms. It had also applied clustering datasets with minimum intra-cluster distance and error rate. (C) 2017 Elsevier Inc. All rights reserved. en_US
dc.description.publishedMonth 3
dc.identifier.citation Farnad, Behnam; Jafarian, Ahmad; Baleanu, Dumitru, "A new hybrid algorithm for continuous optimization problem", Applied Mathematical Modelling, Vol. 55, pp. 652-673, (2018) en_US
dc.identifier.doi 10.1016/j.apm.2017.10.001
dc.identifier.issn 0307-904X
dc.identifier.issn 1872-8480
dc.identifier.scopus 2-s2.0-85039412352
dc.identifier.uri https://doi.org/10.1016/j.apm.2017.10.001
dc.identifier.uri https://hdl.handle.net/20.500.12416/14276
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Genetic Algorithms en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Symbiotic Organisms Search en_US
dc.subject Global Optimization en_US
dc.subject Hybrid Algorithm en_US
dc.subject Data Clustering en_US
dc.title A New Hybrid Algorithm for Continuous Optimization Problem en_US
dc.title A New Hybrid Algorithm for Continuous Optimization Problem tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Farnad, Behnam/0000-0002-3558-3432
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57200088203
gdc.author.scopusid 25031262700
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Farnad, Behnam/Jzd-5868-2024
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Farnad, Behnam] Islamic Azad Univ, Urmia Branch, Dept Comp Engn, Orumiyeh, Iran; [Jafarian, Ahmad] Islamic Azad Univ, Urmia Branch, Dept Math, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 673 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 652 en_US
gdc.description.volume 55 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2768035790
gdc.identifier.wos WOS:000423005800039
gdc.openalex.fwci 4.35441312
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 64
gdc.plumx.crossrefcites 31
gdc.plumx.mendeley 45
gdc.plumx.scopuscites 70
gdc.scopus.citedcount 70
gdc.wos.citedcount 62
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files