Maxwell's Equations on Cantor Sets: A Local Fractional Approach
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Cattani, Carlo | |
dc.contributor.author | Cheng, De-Fu | |
dc.contributor.author | Yang, Xiao-Jun | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2020-05-02T15:43:26Z | |
dc.date.available | 2020-05-02T15:43:26Z | |
dc.date.issued | 2013 | |
dc.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Maxwell's equations on Cantor sets are derived from the local fractional vector calculus. It is shown that Maxwell's equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Local fractional differential forms of Maxwell's equations on Cantor sets in the Cantorian and Cantor-type cylindrical coordinates are obtained. Maxwell's equations on Cantor set with local fractional operators are the first step towards a unified theory of Maxwell's equations for the dynamics of cold dark matter. | en_US |
dc.identifier.doi | 10.1155/2013/686371 | |
dc.identifier.issn | 1687-7357 | |
dc.identifier.issn | 1687-7365 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/3597 | |
dc.language.iso | en | en_US |
dc.publisher | Hindawi LTD | en_US |
dc.relation.ispartof | Advances in High Energy Physics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fractal Space-Time | en_US |
dc.title | Maxwell's Equations on Cantor Sets: A Local Fractional Approach | tr_TR |
dc.title | Maxwell's Equations on Cantor Sets: a Local Fractional Approach | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |