Maxwell's Equations on Cantor Sets: A Local Fractional Approach
dc.authorid | Cattani, Carlo/0000-0002-7504-0424 | |
dc.authorid | Yang, Xiao-Jun/0000-0003-0009-4599 | |
dc.authorscopusid | 56739388100 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 7004857300 | |
dc.authorscopusid | 7402806391 | |
dc.authorscopusid | 37006104500 | |
dc.authorwosid | Zhao, Yongjia/Jsk-6472-2023 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Yang, Xiao-Jun/E-8311-2011 | |
dc.authorwosid | Cattani, Carlo/I-5051-2013 | |
dc.contributor.author | Zhao, Yang | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Cattani, Carlo | |
dc.contributor.author | Cheng, De-Fu | |
dc.contributor.author | Yang, Xiao-Jun | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-05-02T15:43:26Z | |
dc.date.available | 2020-05-02T15:43:26Z | |
dc.date.issued | 2013 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Zhao, Yang; Cheng, De-Fu] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China; [Zhao, Yang] Jiangmen Polytech, Elect & Informat Technol Dept, Jiangmen 529090, Peoples R China; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 077125, Romania; [Cattani, Carlo] Univ Salerno, Dept Math, I-84084 Salerno, Italy; [Yang, Xiao-Jun] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China | en_US |
dc.description | Cattani, Carlo/0000-0002-7504-0424; Yang, Xiao-Jun/0000-0003-0009-4599 | en_US |
dc.description.abstract | Maxwell's equations on Cantor sets are derived from the local fractional vector calculus. It is shown that Maxwell's equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Local fractional differential forms of Maxwell's equations on Cantor sets in the Cantorian and Cantor-type cylindrical coordinates are obtained. Maxwell's equations on Cantor set with local fractional operators are the first step towards a unified theory of Maxwell's equations for the dynamics of cold dark matter. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1155/2013/686371 | |
dc.identifier.issn | 1687-7357 | |
dc.identifier.issn | 1687-7365 | |
dc.identifier.scopus | 2-s2.0-84890036462 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1155/2013/686371 | |
dc.identifier.volume | 2013 | en_US |
dc.identifier.wos | WOS:000327607700001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Hindawi Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 63 | |
dc.title | Maxwell's Equations on Cantor Sets: A Local Fractional Approach | tr_TR |
dc.title | Maxwell's Equations on Cantor Sets: a Local Fractional Approach | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 52 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |