Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Inference of Autoregressive Model with Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions

dc.authorid , Ozlem/0000-0003-0821-150X
dc.authorscopusid 34970726800
dc.authorscopusid 6603740998
dc.authorwosid Turker Bayrak, Ozlem/Abc-1373-2020
dc.contributor.author Bayrak, Ozlem Tuker
dc.contributor.author Akkaya, Aysen Dener
dc.contributor.authorID 56416 tr_TR
dc.date.accessioned 2020-03-17T13:30:15Z
dc.date.available 2020-03-17T13:30:15Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Bayrak, Ozlem Tuker] Cankaya Univ, Dept Intercurricular Courses, Eskisehir Yolu 29 Km,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Akkaya, Aysen Dener] Middle East Tech Univ, Dept Stat, Dumlupinar Bulvari 1, TR-06800 Ankara, Turkey en_US
dc.description Ozlem/0000-0003-0821-150X en_US
dc.description.abstract In classical autoregressive models, it is assumed that the disturbances are normally distributed and the exogenous variable is non-stochastic. However, in practice, short-tailed symmetric disturbances occur frequently and exogenous variable is actually stochastic. In this paper, estimation of the parameters in autoregressive models with stochastic exogenous variable and non-normal disturbances both having short-tailed symmetric distribution is considered. This is the first study in this area as known to the authors. In this situation, maximum likelihood estimation technique is problematic and requires numerical solution which may have convergence problems and can cause bias. Besides, statistical properties of the estimators can not be obtained due to non-explicit functions. It is also known that least squares estimation technique yields neither efficient nor robust estimators. Therefore, modified maximum likelihood estimation technique is utilized in this study. It is shown that the estimators are highly efficient, robust to plausible alternatives having different forms of symmetric short-tailedness in the sample and explicit functions of data overcoming the necessity of numerical solution. A real life application is also given. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Bayrak, Ozlem Tuker; Akkaya, Aysen Dener, "Inference of Autoregressive Model with Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions", Iranian Journal of Science and Technology Transaction a-Science, Vol. 42, No. A4, pp. 2105-2116, (2018). en_US
dc.identifier.doi 10.1007/s40995-017-0448-x
dc.identifier.endpage 2116 en_US
dc.identifier.issn 1028-6276
dc.identifier.issn 2364-1819
dc.identifier.issue A4 en_US
dc.identifier.scopus 2-s2.0-85055536641
dc.identifier.scopusquality Q2
dc.identifier.startpage 2105 en_US
dc.identifier.uri https://doi.org/10.1007/s40995-017-0448-x
dc.identifier.volume 42 en_US
dc.identifier.wos WOS:000456482200044
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Autoregression en_US
dc.subject Modified Maximum Likelihood en_US
dc.subject Non-Normality en_US
dc.subject Robustness en_US
dc.title Inference of Autoregressive Model with Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions tr_TR
dc.title Inference of Autoregressive Model With Stochastic Exogenous Variable Under Short-Tailed Symmetric Distributions en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: