Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law

dc.authorid Ilie, Mousa/0000-0002-1165-8815
dc.authorid Hosseini, Kamyar/0000-0001-7137-1456
dc.authorscopusid 36903183800
dc.authorscopusid 57196518713
dc.authorscopusid 36450796300
dc.authorscopusid 7005872966
dc.authorwosid Ilie, Mousa/Aao-4295-2021
dc.authorwosid Hosseini, Kamyar/J-7345-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Mirzazadeh, Mohammad/Y-3202-2019
dc.contributor.author Hosseini, Kamyar
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ilie, Mousa
dc.contributor.author Mirzazadeh, Mohammad
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-11T13:52:42Z
dc.date.available 2022-03-11T13:52:42Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Hosseini, Kamyar; Ilie, Mousa] Islamic Azad Univ, Rasht Branch, Dept Math, Rasht, Iran; [Mirzazadeh, Mohammad] Univ Guilan, Dept Engn Sci, Fac Engn & Technol, Rudsar, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung, Taiwan en_US
dc.description Ilie, Mousa/0000-0002-1165-8815; Hosseini, Kamyar/0000-0001-7137-1456 en_US
dc.description.abstract The main aim of the current article is considering a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law and deriving its approximate analytical solution in a systematic way. More precisely, after reformulating the nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law, its approximate analytical solution is derived formally through the use of the homotopy analysis transform method (HATM) which is based on the homotopy method and the Laplace transform. The existence and uniqueness of the solution of the nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law are also studied by adopting the fixed-point theorem. In the end, by considering some two- and three-dimensional graphs, the influence of the order of time-fractional operator on the displacement is examined in detail. en_US
dc.description.publishedMonth 5
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Hosseini, Kamyar...et al. (2021). "An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law", Mathematical Methods in the Applied Sciences, Vol. 44, no. 8, pp. 6247-6258. en_US
dc.identifier.doi 10.1002/mma.7059
dc.identifier.endpage 6258 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85102282825
dc.identifier.scopusquality Q1
dc.identifier.startpage 6247 en_US
dc.identifier.uri https://doi.org/10.1002/mma.7059
dc.identifier.volume 44 en_US
dc.identifier.wos WOS:000626241700001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 41
dc.subject Approximate Analytical Solution en_US
dc.subject Existence And Uniqueness Of The Solution en_US
dc.subject Fixed&#8208 en_US
dc.subject Point Theorem en_US
dc.subject Homotopy Analysis Transform Method en_US
dc.subject Mittag&#8211 en_US
dc.subject Leffler Law en_US
dc.subject Nonlinear Time&#8208 en_US
dc.subject Fractional Cauchy Reaction&#8211 en_US
dc.subject Diffusion Equation en_US
dc.title An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law tr_TR
dc.title An Analytic Study on the Approximate Solution of a Nonlinear Time-Fractional Cauchy Reaction-Diffusion Equation With the Mittag-Leffler Law en_US
dc.type Article en_US
dc.wos.citedbyCount 37
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: