On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel
dc.authorid | Fernandez, Arran/0000-0002-1491-1820 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 57193722100 | |
dc.authorwosid | Fernandez, Arran/E-7134-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Fernandez, Arran | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-03-27T08:23:50Z | |
dc.date.available | 2020-03-27T08:23:50Z | |
dc.date.issued | 2018 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Balgat, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Fernandez, Arran] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England | en_US |
dc.description | Fernandez, Arran/0000-0002-1491-1820 | en_US |
dc.description.abstract | We establish a new formula for the fractional derivative with Mittag-Leffler kernel, in the form of a series of Riemann-Liouville fractional integrals, which brings out more clearly the non-locality of fractional derivatives and is easier to handle for certain computational purposes. We also prove existence and uniqueness results for certain families of linear and nonlinear fractional ODEs defined using this fractional derivative. We consider the possibility of a semigroup property for these derivatives, and establish extensions of the product rule and chain rule, with an application to fractional mechanics. (C) 2017 Elsevier B.V. All rights reserved. | en_US |
dc.description.publishedMonth | 6 | |
dc.description.sponsorship | Engineering and Physical Sciences Research Council, UK | en_US |
dc.description.sponsorship | Both authors would like to thank the anonymous referees for their helpful suggestions and recommendations. The second author's research was supported by a research student grant from the Engineering and Physical Sciences Research Council, UK. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, Dumitru; Fernandez, Arran, "On some new properties of fractional derivatives with Mittag-Leffler kernel", Communications In Nonlinear Science and Numerical Simulation, Vol. 59, pp. 444-462, (2018) | en_US |
dc.identifier.doi | 10.1016/j.cnsns.2017.12.003 | |
dc.identifier.endpage | 462 | en_US |
dc.identifier.issn | 1007-5704 | |
dc.identifier.issn | 1878-7274 | |
dc.identifier.scopus | 2-s2.0-85037530829 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 444 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.cnsns.2017.12.003 | |
dc.identifier.volume | 59 | en_US |
dc.identifier.wos | WOS:000425327800034 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 293 | |
dc.subject | Fractional Calculus | en_US |
dc.subject | Ordinary Differential Equations | en_US |
dc.subject | Laplace Transforms | en_US |
dc.title | On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel | tr_TR |
dc.title | On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 273 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: