Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A novel time efficient structure-preserving splitting method for the solution of two-dimensional reaction-diffusion systems

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this article, the first part is concerned with the important questions related to the existence and uniqueness of solutions for nonlinear reaction-diffusion systems. Secondly, an efficient positivity-preserving operator splitting nonstandard finite difference scheme (NSFD) is designed for such a class of systems. The presented formulation is unconditionally stable as well as implicit in nature and even time efficient. The proposed NSFD operator splitting technique also preserves all the important properties possessed by continuous systems like positivity, convergence to the fixed points of the system, and boundedness. The proposed algorithm is implicit in nature but more efficient in time than the extensively used Euler method.

Description

Keywords

Operator Splitting Finite Difference Scheme, Reaction-Diffusion Models, Positivity, Numerical Simulations

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ahmed, Nauman...et al. (2020). "A novel time efficient structure-preserving splitting method for the solution of two-dimensional reaction-diffusion systems", Advances in Difference Equations, Vol. 2020, No. 1.

WoS Q

Scopus Q

Source

Advances in Difference Equations

Volume

2020

Issue

1

Start Page

End Page