Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Fractional Order Mathematical Model of Serial Killing With Different Choices of Control Strategy

dc.contributor.author Ahmad, Shabir
dc.contributor.author Arfan, Muhammad
dc.contributor.author Akgul, Ali
dc.contributor.author Jarad, Fahd
dc.contributor.author Rahman, Mati Ur
dc.contributor.authorID 234808 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-03-27T12:35:00Z
dc.date.accessioned 2025-09-18T14:09:09Z
dc.date.available 2024-03-27T12:35:00Z
dc.date.available 2025-09-18T14:09:09Z
dc.date.issued 2022
dc.description Ahmad, Shabir/0000-0002-5610-6248; Jarad, Fahd/0000-0002-3303-0623 en_US
dc.description.abstract The current manuscript describes the dynamics of a fractional mathematical model of serial killing under the Mittag-Leffler kernel. Using the fixed point theory approach, we present a qualitative analysis of the problem and establish a result that ensures the existence of at least one solution. Ulam's stability of the given model is presented by using nonlinear concepts. The iterative fractional-order Adams-Bashforth approach is being used to find the approximate solution. The suggested method is numerically simulated at various fractional orders. The simulation is carried out for various control strategies. Over time, all of the compartments demonstrate convergence and stability. Different fractional orders have produced an excellent comparison outcome, with low fractional orders achieving stability sooner. en_US
dc.description.publishedMonth 3
dc.identifier.citation Rahman, Mati Ur;...et.al. (2022). "Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy", Fractal and Fractional, Vol.6, No.3, pp.1-16. en_US
dc.identifier.doi 10.3390/fractalfract6030162
dc.identifier.issn 2504-3110
dc.identifier.scopus 2-s2.0-85127541594
dc.identifier.uri https://doi.org/10.3390/fractalfract6030162
dc.identifier.uri https://hdl.handle.net/20.500.12416/13296
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Adams-Bashforth Method en_US
dc.subject Fixed Point Theory en_US
dc.subject Serial Killing en_US
dc.subject Mittag-Leffler Kernel en_US
dc.title Fractional Order Mathematical Model of Serial Killing With Different Choices of Control Strategy en_US
dc.title Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ahmad, Shabir/0000-0002-5610-6248
gdc.author.id Jarad, Fahd/0000-0002-3303-0623
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 57218653063
gdc.author.scopusid 57223020766
gdc.author.scopusid 57200399267
gdc.author.scopusid 58486733300
gdc.author.scopusid 15622742900
gdc.author.wosid Rahman, Mati Ur/Aab-7278-2022
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Arfan, Muhammad/T-7715-2019
gdc.author.wosid Akgül, Ali/F-3909-2019
gdc.author.wosid Ahmad, Shabir/Aaj-8499-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Rahman, Mati Ur] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China; [Ahmad, Shabir] Univ Malakand, Dept Math, Chakdara 18800, Pakistan; [Arfan, Muhammad] Govt Degree Coll Gulabad, Dept Math, Adenzai 25000, Pakistan; [Akgul, Ali] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Dept Math, POB 80257, Jeddah 21589, Saudi Arabia; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 6 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4221121667
gdc.identifier.wos WOS:000776500000001
gdc.openalex.fwci 3.13814595
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 16
gdc.plumx.crossrefcites 17
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.wos.citedcount 18
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files