Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Kinematic Analyses of Metallic Plate Perforation by Penetrators with Various Nose Geometries

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

This study analyses kinematics of a metallic plate perforation by a penetrator with truncated ogive nose geometry to find solutions also to blunt, conical, ogive, and hemi-spherical nosed penetrators. Plugging, ductile hole enlargement, dishing, and petal forming failure modes are used in the analyses. Acceleration throughout perforation is calculated by using the related failure mode, analytical model, and the target-penetrator interaction geometry. Depending on the failure model; back lip and front lip formation during ductile hole enlargement, plug formation during plugging, and deflection of target plate during dishing is also analysed. Analyses are based on projectile’s equation of motion, momentum and energy equations, and projectile-target plate interactions. The analyses results for selected cases, with the impact velocity range 215-863 m/s, are compared with the test data. The residual velocity estimation for a strike velocity is close to the related test data with an error of 0.3-2.2 %, e

Description

Keywords

Limit Velocity, Nose Geometry, Perforation Kinematics, Terminal Ballistics, Penetrator-Plate Interaction

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Akyürek, Turgut. (2022). "Kinematic Analyses of Metallic Plate Perforation by Penetrators with Various Nose Geometries", Defence Science Journal, Vol.72, No.4, pp.334-342.

WoS Q

Scopus Q

Source

Defence Science Journal

Volume

72

Issue

3

Start Page

334

End Page

342