Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Classical and Fractional Aspects of Two Coupled Pendulums

dc.contributor.author Baleanu, D.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jajarmi, A.
dc.contributor.author Asad, J. H.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-09-23T12:49:16Z
dc.date.available 2025-09-23T12:49:16Z
dc.date.issued 2019
dc.description Asad, Jihad/0000-0002-6862-1634 en_US
dc.description.abstract In this study, we consider two coupled pendulums (attached together with a spring) having the same length while the same masses are attached at their ends. After setting the system in motion we construct the classical Lagrangian, and as a result, we obtain the classical Euler-Lagrange equation. Then, we generalize the classical Lagrangian in order to derive the fractional Euler-Lagrange equation in the sense of two different fractional operators. Finally, we provide the numerical solution of the latter equation for some fractional orders and initial conditions. The method we used is based on the Euler method to discretize the convolution integral. Numerical simulations show that the proposed approach is efficient and demonstrate new aspects of the real-world phenomena. en_US
dc.identifier.citation Baleanu, D.; Jajarmi, A.; Asad, J. H., "Classical and Fractional Aspects of Two Coupled Pendulums", Vol. 71, No. 1, (2019). en_US
dc.identifier.issn 1221-1451
dc.identifier.issn 1841-8759
dc.identifier.scopus 2-s2.0-85063595930
dc.identifier.uri https://hdl.handle.net/20.500.12416/15357
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Two Coupled Pendulums en_US
dc.subject Euler-Lagrange Equation en_US
dc.subject Fractional Derivative en_US
dc.subject Euler Method en_US
dc.title Classical and Fractional Aspects of Two Coupled Pendulums en_US
dc.title Classical and Fractional Aspects of Two Coupled Pendulums tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Asad, Jihad/0000-0002-6862-1634
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 34880044900
gdc.author.scopusid 8898843900
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Asad, Jihad/F-5680-2011
gdc.author.wosid Jajarmi, Amin/O-7701-2019
gdc.author.wosid Asad, Jihad/P-2975-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, D.] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, POB MG-23, RO-077125 Bucharest, Romania; [Jajarmi, A.] Univ Bojnord, Dept Elect Engn, POB 94531-1339, Bojnord, Iran; [Asad, J. H.] Palestine Tech Univ, Coll Arts & Sci, Dept Phys, POB 7, Tulkarm, Palestine en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 71 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.wos WOS:000462587800003
gdc.scopus.citedcount 70
gdc.wos.citedcount 68
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files