Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Checkerboard Julia sets for rational maps

Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publ.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this paper, we consider the family of rational maps F-lambda(z) = z(n) + lambda/z(d), where n >= 2, d >= 1, and lambda is an element of C. We consider the case where lambda lies in the main cardioid of one of the n - 1 principal Mandelbrot sets in these families. We show that the Julia sets of these maps are always homeomorphic. However, two such maps F-lambda and F-mu are conjugate on these Julia sets only if the parameters at the centers of the given cardioids satisfy mu = nu(j(d+1))lambda or mu = nu(j(d+1))(lambda) over bar where j is an element of Z and nu is an (n - 1)th root of unity. We define a dynamical invariant, which we call the minimal rotation number. It determines which of these maps are conjugate on their Julia sets, and we obtain an exact count of the number of distinct conjugacy classes of maps drawn from these main cardioids.

Description

Keywords

Julia Set, Mandelbrot Set, Symbolic Dynamics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Blanchard, P...et al. (2013). Checkerboard Julia sets for rational maps. International Journal Of Bifurcation And Chaos, 23(2). http://dx.doi.org/10.1142/S0218127413300048

WoS Q

Scopus Q

Source

International Journal Of Bifurcation And Chaos

Volume

23

Issue

2

Start Page

End Page