Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery

dc.authorid Amin, Fazli/0000-0001-7211-9324
dc.authorscopusid 57203870179
dc.authorscopusid 55293887400
dc.authorscopusid 55213502800
dc.authorscopusid 7005872966
dc.authorwosid Amin, Fazli/Aae-5672-2021
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Wahab, Hafiz Abdul/Caj-2345-2022
dc.authorwosid Umar, Muhammad/Itr-7952-2023
dc.contributor.author Umar, Muhammad
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Amin, Fazli
dc.contributor.author Wahab, Hafiz Abdul
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-02-16T12:43:28Z
dc.date.available 2021-02-16T12:43:28Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Umar, Muhammad; Amin, Fazli; Wahab, Hafiz Abdul] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
dc.description Amin, Fazli/0000-0001-7211-9324 en_US
dc.description.abstract In this article, a numerical computing technique is developed for solving the nonlinear second order corneal shape model (CSM) using feed-forward artificial neural networks, optimized with particle swarm optimization (PSO) and active-set algorithms (ASA). The design parameter is approved initially with PSO known as global search, while for further prompt local refinements ASA is used. The performance of the design structure is scrutinized by solving a number of variants of CSM. The typical Adams numerical results are used for comparison of the proposed results, which establish the worth of the scheme in terms of convergence and accuracy. For more satisfaction, the present results are also compared with radial basis function (RBF) results. Moreover, statistical analysis based on mean absolute deviation, Theil's inequality coefficient and Nash Sutcliffe efficiency is presented (C) 2019 Published by Elsevier B.V. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Umar, Muhammad...et al. (2019). "Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery", Applied Soft Computing, Vol. 85. en_US
dc.identifier.doi 10.1016/j.asoc.2019.105826
dc.identifier.issn 1568-4946
dc.identifier.issn 1872-9681
dc.identifier.scopus 2-s2.0-85073833393
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.asoc.2019.105826
dc.identifier.volume 85 en_US
dc.identifier.wos WOS:000500691600104
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 68
dc.subject Nonlinear en_US
dc.subject Corneal Shape Model en_US
dc.subject Artificial Neural Network en_US
dc.subject Statistical Analysis en_US
dc.subject Active-Set en_US
dc.subject Particle Swarm Optimization en_US
dc.title Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery tr_TR
dc.title Unsupervised Constrained Neural Network Modeling of Boundary Value Corneal Model for Eye Surgery en_US
dc.type Article en_US
dc.wos.citedbyCount 63
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: