Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation
dc.authorid | Akram, Tayyaba/0000-0002-1825-2631 | |
dc.authorid | Asad, Jihad/0000-0002-6862-1634 | |
dc.authorid | Abbas, Dr. Muhammad/0000-0002-0491-1528 | |
dc.authorid | Iqbal, Azhar/0000-0002-5103-6092 | |
dc.authorscopusid | 57208951047 | |
dc.authorscopusid | 43660960400 | |
dc.authorscopusid | 57208671975 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 8898843900 | |
dc.authorwosid | Akram, Tayyaba/C-7034-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Asad, Jihad/F-5680-2011 | |
dc.authorwosid | Abbas, Muhammad/K-8190-2019 | |
dc.authorwosid | Iqbal, Azhar/V-1023-2019 | |
dc.authorwosid | Asad, Jihad/P-2975-2016 | |
dc.contributor.author | Akram, Tayyaba | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Abbas, Muhammad | |
dc.contributor.author | Iqbal, Azhar | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Asad, Jihad H. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-12-31T11:29:33Z | |
dc.date.available | 2020-12-31T11:29:33Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Akram, Tayyaba] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia; [Abbas, Muhammad] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan; [Iqbal, Azhar] Prince Mohammad Bin Fahd Univ, Math & Nat Sci, Al Khobar 31952, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Asad, Jihad H.] Palestine Tech Univ Kadoorie, Coll Appl Sci, Dept Phys, Tulkarm 303, Palestine | en_US |
dc.description | Akram, Tayyaba/0000-0002-1825-2631; Asad, Jihad/0000-0002-6862-1634; Abbas, Dr. Muhammad/0000-0002-0491-1528; Iqbal, Azhar/0000-0002-5103-6092 | en_US |
dc.description.abstract | The telegraph model describes that the current and voltage waves can be reflected on a wire, that symmetrical wave patterns can form along a line. A numerical study of these voltage and current waves on a transferral line has been proposed via a modified extended cubic B-spline (MECBS) method. The B-spline functions have the flexibility and high order accuracy to approximate the solutions. These functions also preserve the symmetrical property. The MECBS and Crank Nicolson technique are employed to find out the solution of the non-linear time fractional telegraph equation. The time direction is discretized in the Caputo sense while the space dimension is discretized by the modified extended cubic B-spline. The non-linearity in the equation is linearized by Taylor's series. The proposed algorithm is unconditionally stable and convergent. The numerical examples are displayed to verify the authenticity and implementation of the method. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Akram, Tayyaba...et al. (2020). "Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation", Symmetry-Basel, Vol. 12, No. 7. | en_US |
dc.identifier.doi | 10.3390/sym12071154 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-85088570219 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/sym12071154 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000554088700001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 34 | |
dc.subject | Nonlinear Time Fractional Telegraph Equation | en_US |
dc.subject | Extended Cubic B-Spline Basis | en_US |
dc.subject | Collocation Method | en_US |
dc.subject | Caputo'S Fractional Derivative | en_US |
dc.title | Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation | tr_TR |
dc.title | Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 34 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |