Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation

dc.authorid Akram, Tayyaba/0000-0002-1825-2631
dc.authorid Asad, Jihad/0000-0002-6862-1634
dc.authorid Abbas, Dr. Muhammad/0000-0002-0491-1528
dc.authorid Iqbal, Azhar/0000-0002-5103-6092
dc.authorscopusid 57208951047
dc.authorscopusid 43660960400
dc.authorscopusid 57208671975
dc.authorscopusid 7005872966
dc.authorscopusid 8898843900
dc.authorwosid Akram, Tayyaba/C-7034-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Asad, Jihad/F-5680-2011
dc.authorwosid Abbas, Muhammad/K-8190-2019
dc.authorwosid Iqbal, Azhar/V-1023-2019
dc.authorwosid Asad, Jihad/P-2975-2016
dc.contributor.author Akram, Tayyaba
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Abbas, Muhammad
dc.contributor.author Iqbal, Azhar
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Asad, Jihad H.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-12-31T11:29:33Z
dc.date.available 2020-12-31T11:29:33Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Akram, Tayyaba] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia; [Abbas, Muhammad] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan; [Iqbal, Azhar] Prince Mohammad Bin Fahd Univ, Math & Nat Sci, Al Khobar 31952, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Asad, Jihad H.] Palestine Tech Univ Kadoorie, Coll Appl Sci, Dept Phys, Tulkarm 303, Palestine en_US
dc.description Akram, Tayyaba/0000-0002-1825-2631; Asad, Jihad/0000-0002-6862-1634; Abbas, Dr. Muhammad/0000-0002-0491-1528; Iqbal, Azhar/0000-0002-5103-6092 en_US
dc.description.abstract The telegraph model describes that the current and voltage waves can be reflected on a wire, that symmetrical wave patterns can form along a line. A numerical study of these voltage and current waves on a transferral line has been proposed via a modified extended cubic B-spline (MECBS) method. The B-spline functions have the flexibility and high order accuracy to approximate the solutions. These functions also preserve the symmetrical property. The MECBS and Crank Nicolson technique are employed to find out the solution of the non-linear time fractional telegraph equation. The time direction is discretized in the Caputo sense while the space dimension is discretized by the modified extended cubic B-spline. The non-linearity in the equation is linearized by Taylor's series. The proposed algorithm is unconditionally stable and convergent. The numerical examples are displayed to verify the authenticity and implementation of the method. en_US
dc.description.publishedMonth 7
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Akram, Tayyaba...et al. (2020). "Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation", Symmetry-Basel, Vol. 12, No. 7. en_US
dc.identifier.doi 10.3390/sym12071154
dc.identifier.issn 2073-8994
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85088570219
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/sym12071154
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000554088700001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 34
dc.subject Nonlinear Time Fractional Telegraph Equation en_US
dc.subject Extended Cubic B-Spline Basis en_US
dc.subject Collocation Method en_US
dc.subject Caputo'S Fractional Derivative en_US
dc.title Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation tr_TR
dc.title Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 34
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: