Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On the Existence of Solutions for a Fractional Finite Difference Inclusion Via Three Points Boundary Conditions

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In this paper, we discussed the existence of solutions for the fractional finite difference inclusion Delta(nu)x(t) is an element of F(t, x(t), Delta x(t), Delta(2)x(t)) via the boundary value conditions xi x(nu - 3) + beta Delta x(nu - 3) = 0, x(eta) = 0, and gamma x(b + nu) + delta Delta x(b + nu) = 0, where eta is an element of N-nu-2(b+nu-1), 2 < nu < 3, and F : N-nu-3(b+nu+1) x R x R x R -> 2(R) is a compact valued multifunction.

Description

Keywords

Fixed Point, Fractional Finite Difference Inclusion, Three Points Boundary Conditions

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Baleanu, D., Rezapour, S., Salehi, S. (2015). On the existence of solutions for a fractional finite difference inclusion via three points boundary conditions. Advance in Difference Equations. http://dx.doi.org/10.1186/s13662-015-0559-7

WoS Q

Q1

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
7

Source

Volume

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 12

Captures

Mendeley Readers : 2

SCOPUS™ Citations

12

checked on Nov 25, 2025

Web of Science™ Citations

7

checked on Nov 25, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
3.94054622

Sustainable Development Goals

SDG data is not available