Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Artificial Neural Networks for Predicted Bending Properties of Additively Manufactured Pyramidal Lattice Truss Core Sandwich Structures

dc.contributor.author Karagozlu, Cem Onat
dc.contributor.author Ayli, Ece
dc.contributor.author Tanabi, Hamed
dc.contributor.author Sabuncuoglu, Baris
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-07-06T00:50:39Z
dc.date.available 2025-07-06T00:50:39Z
dc.date.issued 2025
dc.description.abstract An Artificial Neural Network (ANN) model is developed to predict the mechanical behavior of pyramidal lattice truss core sandwich structures under bending load. The development process aims to optimize material use, enhance structural efficiency, and reduce analysis time for the developed ANN model. Key phases include specimen fabrication via additive manufacturing, experimental testing in four-point bending, and validation of the finite element model (FEM). Experimental tests on five specimens validated FEM simulations with a 4.5 % error rate. The ANN, trained on FEM data, accurately predicts reaction forces and stress components (sigma,, sigma 2, tau,2). Comparison of training algorithms (LM, Levenberg-Marquardt, BR, Bayesian Regularization, SCG, Scaled Conjugate Gradient) highlights LM's superior performance in convergence and MSE reduction (max. MSE value: 2.287), while BRexcels in generalization and robustness. Scaled Conjugate Gradient's performance was lower than the others. The ANN demonstrates high accuracy within the training range but shows limitations in extrapolation. Overall, this ANN model offers engineers a rapid and precise tool for predicting the mechanical behavior of these sandwich structures, reducing reliance on time-consuming FEM simulations and facilitating efficient design optimization across various engineering applications. en_US
dc.identifier.doi 10.1016/j.mtcomm.2025.112926
dc.identifier.issn 2352-4928
dc.identifier.scopus 2-s2.0-105007287960
dc.identifier.uri https://doi.org/10.1016/j.mtcomm.2025.112926
dc.identifier.uri https://hdl.handle.net/20.500.12416/10260
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Pyramidal Lattice Truss Core en_US
dc.subject Sandwich Structure en_US
dc.subject Additive Manufacturing en_US
dc.subject Four-Point Bending Test en_US
dc.subject Finite Element Analysis en_US
dc.subject Artificial Neural Network en_US
dc.title Artificial Neural Networks for Predicted Bending Properties of Additively Manufactured Pyramidal Lattice Truss Core Sandwich Structures en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 17346191100
gdc.author.scopusid 55371892800
gdc.author.scopusid 53164969900
gdc.author.scopusid 23971242800
gdc.author.wosid Sabuncuoglu, Baris/M-5781-2018
gdc.author.wosid Tanabi, Hamed/Ize-2267-2023
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Karagozlu, Cem Onat] Hacettepe Univ, Grad Sch Sci & Engn, Ankara, Turkiye; [Karagozlu, Cem Onat] Turkish Aerosp Ind, Ankara, Turkiye; [Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye; [Tanabi, Hamed; Sabuncuoglu, Baris] Hacettepe Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 47 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4410740205
gdc.identifier.wos WOS:001511140100003
gdc.openalex.fwci 6.47339399
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 3
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files