Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Artificial Neural Networks for Predicted Bending Properties of Additively Manufactured Pyramidal Lattice Truss Core Sandwich Structures

dc.authorscopusid 17346191100
dc.authorscopusid 55371892800
dc.authorscopusid 53164969900
dc.authorscopusid 23971242800
dc.authorwosid Sabuncuoglu, Baris/M-5781-2018
dc.authorwosid Tanabi, Hamed/Ize-2267-2023
dc.authorwosid Ayli, Ulku Ece/J-2906-2016
dc.contributor.author Karagozlu, Cem Onat
dc.contributor.author Ayli, Ece
dc.contributor.author Tanabi, Hamed
dc.contributor.author Sabuncuoglu, Baris
dc.date.accessioned 2025-07-06T00:50:39Z
dc.date.available 2025-07-06T00:50:39Z
dc.date.issued 2025
dc.department Çankaya University en_US
dc.department-temp [Karagozlu, Cem Onat] Hacettepe Univ, Grad Sch Sci & Engn, Ankara, Turkiye; [Karagozlu, Cem Onat] Turkish Aerosp Ind, Ankara, Turkiye; [Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye; [Tanabi, Hamed; Sabuncuoglu, Baris] Hacettepe Univ, Dept Mech Engn, Ankara, Turkiye en_US
dc.description.abstract An Artificial Neural Network (ANN) model is developed to predict the mechanical behavior of pyramidal lattice truss core sandwich structures under bending load. The development process aims to optimize material use, enhance structural efficiency, and reduce analysis time for the developed ANN model. Key phases include specimen fabrication via additive manufacturing, experimental testing in four-point bending, and validation of the finite element model (FEM). Experimental tests on five specimens validated FEM simulations with a 4.5 % error rate. The ANN, trained on FEM data, accurately predicts reaction forces and stress components (sigma,, sigma 2, tau,2). Comparison of training algorithms (LM, Levenberg-Marquardt, BR, Bayesian Regularization, SCG, Scaled Conjugate Gradient) highlights LM's superior performance in convergence and MSE reduction (max. MSE value: 2.287), while BRexcels in generalization and robustness. Scaled Conjugate Gradient's performance was lower than the others. The ANN demonstrates high accuracy within the training range but shows limitations in extrapolation. Overall, this ANN model offers engineers a rapid and precise tool for predicting the mechanical behavior of these sandwich structures, reducing reliance on time-consuming FEM simulations and facilitating efficient design optimization across various engineering applications. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.mtcomm.2025.112926
dc.identifier.issn 2352-4928
dc.identifier.scopus 2-s2.0-105007287960
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.mtcomm.2025.112926
dc.identifier.uri https://hdl.handle.net/20.500.12416/10260
dc.identifier.volume 47 en_US
dc.identifier.wos WOS:001511140100003
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Pyramidal Lattice Truss Core en_US
dc.subject Sandwich Structure en_US
dc.subject Additive Manufacturing en_US
dc.subject Four-Point Bending Test en_US
dc.subject Finite Element Analysis en_US
dc.subject Artificial Neural Network en_US
dc.title Artificial Neural Networks for Predicted Bending Properties of Additively Manufactured Pyramidal Lattice Truss Core Sandwich Structures en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files